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A number of fundamental results in modern statistical theory involve thresh-
olding estimators. This survey paper aims at reconstructing the history of
how thresholding rules came to be popular in statistics and describing, in a
not overly technical way, the domain of their application. Two notions play
a fundamental role in our narrative: sparsity and oracle inequalities. Spar-
sity is a property of the object to estimate, which seems to be characteristic
of many modern problems, in statistics as well as applied mathematics and
theoretical computer science, to name a few. ‘Oracle inequalities’ are a pow-
erful decision-theoretic tool which has served to understand the optimality of
thresholding rules, but which has many other potential applications, some of
which we will discuss.

Our story is also the story of the dialogue between statistics and applied
harmonic analysis. Starting with the work of Wiener, we will see that certain
representations emerge as being optimal for estimation. A leitmotif through-
out our exposition is that efficient representations lead to efficient estimation.
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1. Introduction

1.1. Foreword

This paper is a survey article based on a series of lectures I gave at the
Institute of Mathematical Sciences at the National University of Singapore
in August 2004. The theme of these lectures was the interactions between
applied harmonic analysis and statistical estimation. I feel that it is im-
portant to state upfront that these lectures were by no means conceived
as an extended review of recent developments in the theory and practice
of nonparametric estimation but merely as an account of some important
ideas I had learned as a PhD student in the Department of Statistics at
Stanford University during the years 1995–1998. More to the point, these
lectures owe much to the scientific vision proposed by David Donoho and his
colleagues in a series of papers published in the early and mid-1990s, which
have influenced my thinking enormously, and continue to do so. I would
also like to acknowledge inspiration from a course I took called ‘Function
Estimation in White Noise’ taught by Iain Johnstone, and from a set of
notes written for this course, which have been updated since then, namely,
Johnstone (2002) in the reference section. This paper makes repeated refer-
ences to Johnstone’s unpublished manuscript, as the latter deals with many
of the topics we discuss here. I might have achieved something, should this
paper merely serve the purpose of encouraging the curious reader to take a
look at Donoho’s papers and Johnstone’s manuscript.

1.2. Interactions between statistical estimation and harmonic analysis

The interactions between harmonic analysis and statistical estimation have,
of course, a long history. Although it is amusing to note that Joseph Fourier,
the founding father of harmonic analysis, spent a significant fraction of
his research career studying statistical problems (see Stigler (1990) for an
excellent account of Fourier’s contribution to early statistics), this history
cannot be traced quite that far back. Instead, the credit for bringing both
these topics together should probably go to Norbert Wiener where our story
begins. In the late 1930s and early 1940s, Wiener studied the problem of
filtering out noise (by statistical means) that has corrupted a time series.
He developed a solution by requiring information regarding the spectral
content of the original signal and the noise, and by creating a filter, which,
for stationary signals, filters selected frequencies. This filter was proposed
in the 1940s and first published in Wiener (1949). Since this fundamental
contribution, Fourier analysis has always played an important role in the
filtering literature and, more generally, in the analysis of time series.

Harmonic analysis and statistical estimation also remained connected via
the theory of splines (Wahba 1990), via the theory of estimation in sta-
tistical inverse problems and via key theoretical developments in function
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estimation in the white noise model, to name a few examples. Having said
that, it is nevertheless fair to say that the subject has been completely re-
vitalized by Donoho and his colleagues. In the early 1990s, Donoho and
his team realized that recent advances in applied harmonic analysis such
as the theory of wavelets had very significant implications for statistical
estimation. They developed wavelet shrinkage and established many of its
spectacular properties, showing that, perhaps surprisingly, this algorithm
has universal properties in the sense that it solves many statistical estima-
tion problems simultaneously. I am sure that everyone reading this paper
has heard about wavelet shrinkage as this has almost become a household
word, and is perhaps the greatest application of wavelets to this date. But
beyond wavelet shrinkage, Donoho also showed that efficient representations
lead to efficient estimations, and that certain representations emerge as opti-
mal. In doing so, he has linked statistical estimation and harmonic analysis
in a durable and profound way. There is something remarkable about the
timeliness of this discovery, since it occurred during a period marked and
followed by intense research in computational harmonic analysis. On the
one hand, applied mathematicians were energized by the prospect of new
applications for the tools they were constructing, and on the other hand,
statisticians had access to a brand new and powerful toolbox to refine and
extend Donoho’s ideas.

1.3. Our preoccupations

Such a broad subject imposes a selection of topics that will be covered and
others that will not. As emphasized earlier, we will focus on ideas that
have shaped my thinking; our focus is on the key structures and tools that
bind statistical estimation and harmonic analysis. For example, we will
explore the consequences of sparsity and emphasize the key role played by
oracle inequalities – a new, fruitful and enlightening concept with an almost
unlimited range of applications.

Our focus on sparsity and oracle inequalities serves a simple purpose: we
wish to provide the reader with the necessary ideas for understanding an im-
portant fraction of the literature on modern statistical estimation, and with
tools for future research in this area. Our point of view is that both these
notions are fundamental, and that many decision-theoretic results are, in
fact, easy consequences from rather simple oracle inequalities. To make this
point, the reader perhaps already knows that wavelet shrinkage, discussed
above, is asymptotically optimal for recovering objects taken from certain
functional classes, such as the so-called Besov spaces – a result which has
attracted a lot of attention. In truth, this is an automatic consequence of
the fact that (1) wavelets provide optimally sparse representations of such
functional classes, and that (2) a fundamental oracle inequality relates the
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performance of thresholding rules to the sparsity of such wavelet representa-
tions. Although there exist other ways to comprehend these types of results
– note that we are not saying that these alternatives are uninteresting – we
have decided to shift focus away from these and, instead, discuss what we
believe are more fundamental concepts.

Indeed, the concepts of sparsity and oracle inequalities have already had
a significant impact and everything suggests that this impact will last for
a very long time. For example, ‘sparsity’ has become a true paradigm in
many fields (not only statistics) including applied mathematics, theoretical
computer science, signal and image processing, inverse problems, scientific
computing and so on. While the potential for sparsity has been understood
for a while now, there were relatively very few papers on this subject twenty
years ago. In contrast, it is startling to see that the number of research
papers and talks with ‘sparsity’ as a central theme has been exploding over
the last few years. An oracle inequality, on the other hand, is a decision-
theoretic tool and its use has thus far been confined to the field of statistical
estimation. There are many forms of oracle inequalities and, as we will see,
they have proved extremely successful in addressing the performance of
many new estimation strategies ‘post-wavelet shrinkage’. Without a doubt,
oracle inequalities will continue to play a vital role in years to come.

1.4. Organization of the paper

We begin our survey with early important ideas in linear estimation, which
are presented in Section 2. What is interesting here is that these ideas
make explicit the connection between the estimation problem and the rep-
resentation problem (the subject of applied harmonic analysis). Section 3
motivates the need for nonlinear estimation procedures. Section 4 intro-
duces nonlinear estimation (nonlinear shrinkage to be more exact) and the
powerful concept of oracle inequality. Section 5 introduces the notion of
sparsity and shows that thresholding rules are very accurate for estimating
sparse objects, e.g., parameter vectors with only a few significant entries.
Section 6 argues that the problems of efficiently estimating, approximat-
ing, or compressing a signal (or a function) are all related and all linked
to the fundamental problem of finding efficient signal representations. In
Section 7, we consider extensions of thresholding ideas when there is no
orthobasis (i.e., orthonormal basis) in which the object is sparse. Section 8
revisits some topics in model selection and introduces the Dantzig selector,
a new effective and computationally tractable estimation strategy for esti-
mating signals from undersampled data. Section 9 explores the possibility of
adaptive basis estimation. Finally, we close the paper by discussing further
topics, essentially inverse problems and false discovery rate thresholding
rules in Section 10.
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Because the intended audience is wide-ranging, we also include a Glossary,
on page 324, where the reader will find definitions or explanations of the
main statistical terms or concepts. The words or expressions to be found in
the Glossary are marked by a superscript star, ⋆.

2. Linear estimation

2.1. The Wiener filter

We start with a classical estimation problem known as ‘Wiener filtering’ in
the electrical engineering literature. This example is primarily of historical
significance and the author would otherwise have been guilty of omission.
But more importantly, this example will play a pedagogical purpose as it
wonderfully introduces some of the key ideas surveyed in this paper.

We wish to recover a Gaussian signal⋆ X = (X1, X2, . . . , Xn) from noisy
data Y of the form

Yt = Xt + Zt, t = 1, . . . , n; (2.1)

here, Y is the observed process, X is the signal, which is assumed to be
a Gaussian process with mean zero and covariance matrix Σ, i.e., X ∼
N(0, Σ), and Z is Gaussian white noise, i.e., Z ∼ N(0, σ2I), and indepen-
dent of the signal X. One may want to view this as a Bayesian estimation⋆

problem where the prior on the unknown signal is Gaussian. The goal is to
reconstruct the signal by producing an estimator X̂ = g(Y ) which can be
computed from the data, and which has small mean-squared error

MSE(X, X̂) = E‖X − X̂‖2
2 = E

n∑

t=1

(Xt − X̂t)
2. (2.2)

As is well known in Bayesian statistics (e.g., see Lehmann (1997)), the
estimator which achieves the minimum MSE is the conditional expectation
of X given the observed process Y :

X̂ = E(X | Y ). (2.3)

In detail, the tth component is given by

X̂t =

∫

Rn

zt pX|Y (z) dz,

where pX|Y is the conditional density of the random vector X. At first
glance, the analytical evaluation of the conditional expectation might seem
a little delicate. Having said that, a detour by way of principal components
greatly simplifies things.

Recall that the principal components of a process (Xt)1≤t≤n are the ortho-
normal eigenvectors ϕk, 1 ≤ k ≤ n, which diagonalize the covariance matrix
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Σ of X. In matrix notation, the matrix of principal components Φ is the n
by n orthonormal matrix obeying

Σ = ΦDΦT , D = diag(d2
k). (2.4)

We will assume that the eigenvalues are arranged in decreasing order of
magnitude d2

1 ≥ d2
2 ≥ · · · ≥ d2

n. (We use the notation d2
k to emphasize that

the eigenvalues of Σ are nonnegative since Σ is positive semidefinite.) The
interpretation is that, if X is Gaussian, then the level sets of the joint density
of the vector X are concentric ellipsoids, and the principal components are
simply the (normalized) principal axes of these ellipsoids. A more general
interpretation, which holds for general stochastic processes (not necessarily
Gaussian), is that the first principal component is a projection with maximal
variance; ϕ1 is a unit vector obeying

Var(uT X) ≤ Var(ϕT
1 X), for all u ∈ R

n : ‖u‖ = 1.

The second principal component ϕ2 is then a projection with maximal vari-
ance among all projections orthogonal to ϕ1

Var(uT X) ≤ Var(ϕT
2 X), for all u ∈ R

n : ‖u‖ = 1, u ⊥ ϕ1,

and so on for ϕ3, ϕ4, . . . , ϕn.
With this in mind, principal component analysis is the action of decom-

posing a process X as a superposition of its principal components. It consists
of two steps.

(1) The analysis step finds the orthonormal eigenvectors ϕk and projects
X onto this basis, i.e.,

X ′ = ΦT X.

(2) The synthesis step reconstructs the process from the principal compo-
nents using the orthonormal eigenvectors by X = ΦX ′, i.e.,

Xt =
n∑

k=1

X ′
kϕk(t). (2.5)

This formula is also known as the Karhunen–Loeve decomposition: see
Leon-Garcia (1994).

By definition, the coefficients X ′
k in the expansion (2.5) are uncorrelated –

the covariance matrix of X ′ is the diagonal matrix D – and are therefore also
independent in the case where X is Gaussian since X ′ ∼ N(0, D). Hence,
the Karhunen–Loeve decomposition provides a representation of Gaussian
stochastic processes as a superposition of independent components.

We now return to the estimation problem and ‘rotate’ the observation
vector Y in the orthonormal basis of principal components by applying ΦT
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on both sides of (2.1)

〈Y, φk〉 = 〈X, φk〉 + 〈Z, φk〉,
Y ′

k = X ′
k + Z ′

k.

The coordinates X ′
k ∼ N(0, d2

k) are independent; the Z ′
k are i.i.d.⋆ N(0, σ2)

and independent of X ′. Obviously, the problem has not changed and we are
merely looking at it from a different perspective . In particular, to estimate

X, we may just as well estimate its coefficient sequence X ′ with X̂ ′: that is,
with any estimator with minimum mean-squared error. The synthesis step

would then provide the reconstruction X̂ = ΦX̂ ′,

X̂t =
n∑

k=1

X̂ ′
k ϕk(t),

and owing to the isometry

‖X − X̂‖2 = ‖X ′ − X̂ ′‖2,

this would be exactly the estimator with minimum MSE: X̂ = E(X | Y ).

The point of all this is that X̂ ′ is now easy to compute since

X̂ ′
k = E(X ′

k | Y ′) = E(X ′
k | Y ′

k),

where the second equality uses the fact that X ′
k is independent of all the

components Y ′
j with j 	= k. Now the pair (X ′

k, Y
′
k) follows a bivariate nor-

mal distribution with mean zero and covariance matrix Var(X ′
k) = d2

k =
Cov(X ′

K , Y ′
k), and Var(Y ′

k) = d2
k + σ2. It is a classical exercise in regression

analysis to show that the conditional distribution of X ′
k is Gaussian with

conditional mean

E(X ′
k | Y ′

k) =
λ2

k

λ2
k + σ2

Y ′
k, (2.6)

so that the Wiener estimator is given by

X̂t =
n∑

k=1

wk〈Y, φk〉ϕk(t), wk =
λ2

k

λ2
k + σ2

. (2.7)

In short, the Wiener filter transforms the data with respect to the orthobasis
of principal components, and downweights each coefficient as a function of
the signal-to-noise ratio since one can think of the coordinates of w as the
ratio between the expected signal power and the expected signal + noise
power. Note that downweighting and the whole estimation procedure are
linear, and that one can write X̂ as

X̂ = ΦWΦT Y,

where W = diag(wk).
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It is interesting to consider special instances of Wiener filtering. Suppose
for example that the process process X is stationary (and periodic) in the
sense that the covariance between Xs and Xt only depends on the time lag

Σs,t = Cov(Xs, Xt) = γ(s − t), 1 ≤ s, t ≤ n,

where it is understood that subtraction operates modulo n. This property
says that the statistical properties of the signal are invariant with respect
to time shifts, which conveys the idea that the process is spatially homoge-
neous. Because Σ is a circulant matrix, the basis of principal components
is the Fourier basis which, for even sample sizes n, takes the form

ϕ1(t) = 1/
√

n,

ϕ2k(t) =
√

2/n cos(2πkt/n), k = 1, 2, . . . , n/2 − 1,

φ2k+1(t) =
√

2/n sin(2πkt/n), k = 1, 2, . . . , n/2 − 1,

ϕn(t) = (−1)t/
√

n,

and the eigenvalues are the Fourier coefficients of the vector (γ(0), . . . ,
γ(n − 1)). Hence, Bayes’ rule or Wiener’s solution exhibit the following
key structure:

(1) Bayes’ rule transforms the data in the frequency domain,

(2) Bayes’ rule shrinks the noisy Fourier coefficients towards zero using a
specially selected frequency-dependent factor,

(3) finally, Bayes’ rule reconstructs the signal by inverting the Fourier
transform.

As we shall see, this transformation–shrinkage–inverse transformation struc-
ture is a recurrent theme in modern statistical estimation. What is interest-
ing here is that the estimation problem makes no reference to any particular
basis, nor to any particular shrinkage rule, and yet this structure naturally
emerges as the optimal strategy.

In conclusion, the Wiener filter is optimal for Gaussian signal priors. In
the case where X is non-Gaussian, however, the estimator (2.7) is only guar-
anteed to have minimum mean-squared error among all linear estimators;
see Leon-Garcia (1994).

2.2. Kernel methods

In contemporary nonparametric statistics, there are other models which do
not assume a prior distribution on the signals or functions of interest. The
so-called frequentist viewpoint assumes a model of the form

yi = f(ti) + zi, 1 ≤ i ≤ n, (2.8)
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where again y is a vector of observations, the function f(t) is the object
we wish to recover, and z is a vector of stochastic and independent errors.
In nonparametrics, the object f is completely unknown and does not de-
pend upon a few parameters. The goal is to estimate f from the data y.
Note that to develop a fruitful methodology, one would need to restrict the
classes of objects f of interest, since to extract the object, one would need to
be able to distinguish it from noise. Examples of common assumptions in-
clude imposing a bounded total variation, a bounded curvature, or bounded
higher-order derivatives.

One of the first developed and most frequently discussed approaches for
estimating the regression function f is the kernel method: see Silverman
(1986) and Scott (1992) for an introduction. The idea is to estimate the
response f(t) by a local averaging of the data yi with ‘time indices near’ the
point t under consideration. To do this, one selects a kernel K, usually a
symmetric density function, which is nonnegative and integrates up to one.
Typical examples include the boxcar kernel K(t) = 1 if −1/2 ≤ t ≤ 1/2

and zero otherwise, the Gaussian kernel K(t) = (2π)−1/2e−t2/2, and the
‘spline’ kernel or Epanechnikov kernel equal to 3

4(1 − t2)+, where here and
below x+ is the positive part of the scalar x. With such a kernel, the kernel
regression sets

f̂(t) =

∑n
i=1 wiyi∑n
i=1 wi

, (2.9)

where the weights are given by the formula

wi = K(h−1(t − ti)). (2.10)

Hence, the estimator is a weighted average and closer points naturally re-
ceive larger weights since typical kernels K(t) decay as |t| increases. The
parameter h is the window width, or the bandwidth, and essentially de-
termines which observations are averaged together. A small bandwidth
averages over very few points, while a very large bandwidth may average
over a significant fraction of the data set.

To connect kernel regression with our earlier discussion, suppose that the
tis are equispaced in [0, 1], e.g., ti = i/n with 1 ≤ i ≤ n and that the esti-
mand f(t) is periodic. These assumptions are only useful for getting simple
results. In the equispaced design, the Priestley–Chao kernel smoother is of
the form

f̂(t) =
1

nh

n∑

i=1

K(h−1(t − ti))yi, (2.11)

where the subtraction is understood modulo [0, 1]. The estimator is then
a convolution in the time domain or, equivalently, a multiplication in the
Fourier domain. Let (wk(h))k∈Z be the sequence of Fourier coefficients of
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the density h−1K(·/h)

wk(h) =

∫ 1

0
h−1K(h−1t)e−i2πkt dt

and let (ỹk)k∈Z be those of the vector y

ỹk =

∫ 1

0
n−1

n∑

i=1

yiδ(t − ti) e−i2πkt dt =
1

n

n∑

j=1

e−i2πktjyj

(note that ỹk+n = ỹk). We also denote the coefficient sequence of f by
(θk)k∈Z . In the frequency domain, the estimator (2.11) obeys

θ̂k = wk(h) · ỹk, (2.12)

where we observe that 0 ≤ |wk(h)| ≤ 1. In short, the kernel method esti-
mates the Fourier coefficients of f by shrinking those of the observations y,
and hence the structure of this procedure is similar to that of the Wiener
filter: the estimation combines the transformation of the data in the Fourier
domain with frequency-by-frequency dumping. If W is the Fourier trans-
form of K,

W (ω) =

∫
K(t)e−i2πωt dt,

then wk(h) ≈ W (kh) and |wk(h)| typically decreases as the frequency index

|k| increases. For example, if K is the Gaussian kernel, W (kh) = e−(kh)2/2.
The bandwidth h controls the decay of the weights wk(h); the larger h, the
faster the decay and hence the greater the amount of smoothing.

Whereas the Wiener filter gives an explicit formula for the weights, here
the sequence wk(h) depends upon the kernel and above all upon the band-
width. Automatic selection of the bandwidth h – i.e., how much to smooth
– is the topic of an immense literature. There are theoretical rules based
on asymptotics which guarantee good MSEs for estimating smooth func-
tions together with more practical rules for finite samples, e.g., based on
cross-validation: see Green and Silverman (1994).

2.3. Smoothing splines

Another popular approach for estimating the regression function is based
on smoothing splines. The idea is to find an estimator f̂ which minimizes
the trade-off between the goodness of fit and the complexity of the estima-
tor, as measured by the size of the second derivative of the fitted function.
Quantitatively, we wish to find the function f̂(t) which minimizes the vari-
ational problem

f̂ = argming

n∑

i=1

(yi − g(ti))
2 + λ

∫ 1

0
|g′′(u)|2 du. (2.13)
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Like the bandwidth, the parameter λ > 0 controls the smoothness of the fit.
The larger λ, the smoother the fit (in the limit where λ goes to infinity, the
regression function is the regression line). It is not difficult to show that the

solution f̂(t) to (2.13) is a cubic spline with knots at the sampled points ti
– hence the name of the method. The problem of fitting the data is then a
finite-dimensional problem, which can be solved efficiently on a computer.

As before, we wish to develop an understanding of the structure of the
solution by making some useful simplifying assumptions. Suppose that the
points ti = i/n, 1 ≤ i ≤ n are equispaced and that the estimand f is
periodic. We approximate the second term of (2.13) by finite differences so
that one is interested in finding the vector g ∈ R

n minimizing

min
∑

1≤i≤n

(yi − gi)
2 + λ

∑

1≤i≤n

|(D2g)i|2, (2.14)

with

(D2g)i =
gi+1 − 2gi + gi−1

n2
.

(Because f is assumed periodic, we set g0 = gn in the above formula so
that the matrix D2 is circulant.) Let ỹk (resp. g̃k) be the discrete Fourier
coefficients of y (resp. g)

ỹk =
∑

1≤i≤n

yiφk(i/n),

where (φk(t))1≤k≤n is the sequence of sines and cosines introduced in Sec-
tion 2.1. Since D2 is diagonal with eigenvalues d1 = 0, d2k = d2k+1 =
4n−2 sin2(πk/n) for 1 ≤ k ≤ n/2 − 1 and dn = 4n−2, then owing to the
Fourier isometry, the minimization problem is equivalent to

min
∑

1≤k≤n

[(ỹk − g̃k)
2 + λ · d2

k g̃2
k]. (2.15)

The solution is now readily available; namely, the discrete Fourier coeffi-
cients (θ̂k) of the fitted vector f̂(i/n) are given by

θ̂k =
ỹk

1 + λd2
k

. (2.16)

Once again, a familiar structure emerges. Spline smoothing rotates the data
in the frequency domain and linearly shrinks the high-frequency components
towards zero, i.e.,

f̂λ := ΦWλΦT y, Wλ = diag((1 + λd2
k)

−1).

The larger λ, the greater the shrinkage. A small value of λ does not imply a
lot of smoothing and yields a low bias⋆ but a large variance. Conversely, a
large value of λ gives a fit with large bias and small variance. An important
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topic in spline smoothing is then how to select the parameter λ. In other
words, how best to trade off between bias and variance.

To understand the trade-off, we examine the mean-squared error of the fit

E‖f − f̂λ‖2 =

n∑

i=1

E(f(ti) − f̂λ(ti))
2,

where ‖f − fλ‖2 is the Euclidean norm
∑n

i=1(f(ti) − f(t))2 and f̂λ is the

solution to (2.14); that is, f̂λ = Sλy where we put Sλ = ΦWλΦT for short.
The classical bias variance decomposition gives

E‖f − f̂λ‖2 = ‖f − Ef̂λ‖2 + E‖f̂λ − Ef̂λ‖2;

the bias term obeys fλ − Ef̂λ = (I − Sλ)f while the ‘variance term’ is
given by

E‖f̂λ − Ef̂λ‖2 = E‖Sλz‖2 = σ2 · Tr(ST
λ Sλ) = σ2 ·

∑

k

w2
k(λ),

where wk(λ) = (1 + λd2
k)

−1. The squared bias increases as λ increases
whereas the variance decreases so that the optimal value of λ trades off
between the source of errors. Suppose that the sequence (θk)1≤k≤n is the
discrete Fourier coefficient sequence of (f(ti))1≤i≤n; then the MSE obeys

E‖f − f̂λ‖2 =
∑

1≤k≤n

[(1 − wk(λ))2θ2
k + σ2w2

k(λ)]. (2.17)

The best value of the smoothing parameter is that value λ∗ which minimizes
the above mean-squared error. Expressed in a different way, an ‘omniscient’
procedure knowing in advance λ∗ would automatically answer the funda-
mental question: how much to smooth? This information is, of course,
not available in practice, and this is why we used the word ‘omniscient’ to
qualify the procedure. In practice, the best one can hope for is to select a
smoothing parameter λ̂ – based on the data – close to the optimal one. An
interesting question is then whether it is possible to find λ̂ such that the
performance of the resulting estimator is close to that of the ideal one. As
we will see, such issues will form a recurring theme of this paper.

We conclude this short overview of smoothing splines by pointing out that
the solution to (2.13) has the exact same structure as that discussed above
even in the case where the design points ti are unequispaced. In short, there
is an orthonormal basis (ϕk)1≤k≤n known as the Demmler–Reinsch system
(Wahba 1990) which – like the discrete Fourier basis – diagonalizes the
minimization problem (2.13) so that the solution in that basis is given by

f̂(t) =
∑

1≤k≤n

θ̂kφk(t),
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where the coefficients θ̂k are given by the same relation as (2.16) with, of
course, slightly different eigenvalues. The Demmler–Reinsch functions are
boundary-adapted sinusoidal waveforms.

2.4. Statistical theory

On the theoretical side, there is a large literature showing that if the shrink-
age parameters are chosen appropriately, the corresponding linear estima-
tors are, in an asymptotic sense, optimal for recovering objects assumed to
belong to certain types of functional classes. These results are perhaps best
presented in the so-called ‘white noise model’, that is,

Y (dt) = f(t) dt + εW (dt), t ∈ [0, 1]. (2.18)

Here W (t) denotes a Wiener process (i.e., the primitive of white noise); ε is
a noise level; and f is the object to be recovered. Formally, this model says
that if we take a finite numbers of projections of the data Y and define

yk := 〈Y, ϕk〉 = 〈f, ϕk〉 + ε zk, 1 ≤ k ≤ n

where the ϕk(t)s are any functions bounded in L2, then z = (z1, . . . , zn) is a
Gaussian vector with mean 0 and covariance matrix Cov(zk, zℓ) = 〈ϕk, ϕℓ〉,
the Gram matrix of the waveforms ϕk. In particular, if the ϕks are orthogo-
nal, the coordinates of z are independent. This explains why the white noise
model should be understood as the large sample limit of the discrete model
(2.8) where the errors zi are i.i.d. N(0, σ2) under the calibration ε = σ/

√
n.

To see why this is so, consider averaging (2.18) over intervals of the form
Ii := [(i − 1)/n, i/n]. This gives

yi := n 〈Y, 1Ii
〉 = f̄i + ε

√
n zi,

where f̄i = AveIi
f and the zis are i.i.d. N(0, 1). For sufficiently nice func-

tions, f̄i is close to f(i/n) when n is large, which justifies the claim. In sum-
mary, the asymptotics in the continuous white noise model as ε → 0 have
similar characteristics to the asymptotics in the discrete model as n → ∞.
In fact, although the model is continuous and real data are typically dis-
cretely sampled, the asymptotic theory deriving from the white noise model
has typically been found to lead directly to comparable asymptotic theory
in a sampled data model. We do not wish to elaborate on this point, and
refer the reader to Brown and Low (1996), Nussbaum (1996) for general
theory, and to Efrŏımovich and Pinsker (1981, 1982), Nussbaum (1996),
Donoho and Nussbaum (1990), Donoho and Liu (1991) and Donoho and
Johnstone (1999) for examples of translations of optimal solutions in the
white noise model to corresponding solutions in the sampled data model.
The advantage is that the white noise model is more homogeneous than
sampled data models, and since estimation in the white noise model is in
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general neither easier nor harder than in sampled models, it has proved to
be a fruitful theoretical tool.

Decision theory develops a mathematical theory for making decisions in
the face of uncertainty. In the theory of estimation, for example, suppose
we wish to estimate a function θ on the basis of a sample Y = (Y1, . . . , Yn),
where the distribution of the Yis depend on θ. Then, by choosing an es-
timator θ̂ = g(Y ), the decision maker incurs a loss ℓ(θ, θ̂) whose expected
value is called the risk⋆ function

R(θ, θ̂) = Eℓ(θ, θ̂).

In the set-up of interest here, the parameter f is the unknown regression
function and the observations follow the white noise model (2.18). If we take

as a loss the L2-squared error ℓ(f, f̂) = ‖f − f̂‖2
L2

, the risk is the integrated
mean-squared error

MSE(f, f̂) = E‖f − f̂‖2
L2

.

Decision theory is concerned with finding good decisions, i.e., decision func-
tions with small risk. Note that the risk depends on f which is not known.
Some decisions may be good for certain values of the parameters and poor
for others. Consider for instance, two estimators f̂i, i = 1, 2, which are
constant and equal to fi. Suppose f1 and f2 are wildly different. When the
true state of nature is f1 the first estimator has vanishing risk, but a very
large risk when the true state is f2, and vice versa for the second estimator.
The two dominating viewpoints for getting around this difficulty are the
minimax and Bayesian paradigms.

(1) The minimax⋆ point of view defines a functional class F and searches

for an estimator f̂ which exactly or approximately attains the minimax
risk (here the minimax mean-squared error):

M∗(ε,F) = inf
f̂

sup
f∈F

MSE(f, f̂).

In other words, one is interested in the estimator with minimum worst-
case error. The minimax approach puts no restriction on the estimator;
all measurable procedures – i.e., all measurable functions of Y – are
allowed.

(2) The Bayesian point of view assumes a prior process π about f (so
that π(A) is the probability that the object f belongs to the set A)
and searches for the estimator achieving the minimum average mean-
squared error, the so-called Bayes risk

B(π) = EπMSE(f, f̂).

Here one averages the MSE over the prior distribution π. This is the
viewpoint of the Wiener filter which assumes a Gaussian prior process.
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If one is given a functional class, as in the minimax framework, then a
possible approach is to select a prior on F , a probability distribution
on the elements f ∈ F obeying π(F) = 1.

A key result of statistical decision theory is that the minimax risk is lower-
bounded by the Bayes risk for any choice of prior π obeying π(F) = 1.

inf
f̂

sup
f∈F

MSE(f, f̂) ≥ B(π). (2.19)

Under mild conditions, a famous result due to Wald proves the existence of
prior distributions satisfying inequality (2.19); such distributions are called
least favourable priors.

A splendid result in the minimax theory of linear estimation is due to
Pinsker. We wish to recover an object f which is assumed to lie in a
Sobolev ball

F = {f : ‖f‖W m
2

≤ R},

where ‖ · ‖W m
2

is the Sobolev norm

‖f‖2
W m

2
:=

∫

[0,1]
|f(t)|2 + |f (m)(t)|2 dt, (2.20)

in which f (m) is the mth derivative of the function f . In short, the mth
derivative of f is assumed to be bounded in an L2-sense. Pinsker’s solution
applies linear shrinkage in the Fourier domain, and is given by

f̂(t) =
∑

k≥0

wk,ε〈Y, ϕk〉ϕk(t). (2.21)

Because we are now studying continuous-time models, (ϕk(t))k≥0 is the
continuous-time orthonormal Fourier basis of L2(0, 1)

φ0(t) = 1,

φ2k(t) =
√

2 cos(2πkt), k ≥ 1,

φ2k−1(t) =
√

2 sin(2πkt), k ≥ 1,

and the weights are given by

Wk,ǫ = (1 − λkm)+;

in the above expression, the scalar λ actually depends on ε and R: see (2.24).
It is important to take note that the weights depend on the parameters that
define the functional class: the degree of smoothness m and the modulus of
smoothness R. The result is that f̂(t) is asymptotically minimax.
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Theorem 2.1. (Pinsker’s theorem) The estimator (2.21) is asymptot-
ically minimax

sup
F

MSE(f, f̂) = M∗(ε,F)(1 + o(1)),

where o(1) is a term tending to zero as ε tends to zero.

To give a geometric interpretation of Pinsker’s theorem, introduce the
empirical Fourier coefficients

〈Y, ϕk〉 = 〈f, ϕk〉 + ε〈W, ϕk〉,
yk = θk + εzk.

By the Parseval theorem, the condition imposing a size constraint on the
size of the mth derivative is equivalent to a weighted-ℓ2 size estimate on the
Fourier coefficient sequence of f :

f ∈ F ⇔ θ ∈ Θ,

where Θ is the infinite-dimensional ellipsoid

Θ :=

{
θ :

∑

k≥0

(1 + k2m)(|θ2k−1|2 + |θ2k|2) ≤ R2

}
. (2.22)

The problem is then to recover θ ∈ Θ from the infinite Gaussian sequence
model y ∼ N(θ, ε2I). The idea is that for ellipsoids, least favourable priors
are essentially Gaussian. Consider a general ellipsoid

Θ(R) :=

{
θ :

∑

k

a2
kθ

2
k ≤ R2

}

in which ak > 0 tends to infinity as k tends to infinity. Note that in the
case of the Sobolev ball, a2k−1 = a2k = km, or (1 + |k|2m)1/2 to be more
exact. The least favourable prior over the ellipsoid nearly has Gaussian
independent components given by

θk ∼ N(0, τ2
k ), τ2

k = ε2λ−1(a−1
k − λ)+, (2.23)

where the scalar λ is that appearing in Pinsker’s weights. This scalar is
chosen as the smallest real number with

∑
k a2

kτ
2
k ≤ R2, i.e., λ is the solu-

tion to

ε2λ−1
∑

k

ak(1 − λak)+ = R2. (2.24)

The careful reader will notice that π(Θ(R)) < 1 but it is possible to consider
small perturbations of this prior which asymptotically concentrate on Θ(R).
We leave out the details and refer to Johnstone (2002). For Gaussian priors,
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one can calculate Bayes’ rule, which takes the form

θ̂k := (1 − λak)+ yk.

This is none other than Pinsker’s estimate with weights wk = (1 − λak)+,
and the MSE of this estimator obeys

MSE(θ, θ̂) =
∑

k

(1 − wk)
2θ2

k + w2
kε

2,

which actually simplifies to ε2
∑

k wk.

3. Why nonlinear estimation?

Linear estimation is well suited for estimating Gaussian processes, or ob-
jects taken from functional classes which are ellipsoids when viewed in the
right basis. The problem is that many stochastic processes of scientific
interest are not Gaussian and that many functional classes are not ellip-
soids. Unfortunately, linear estimation is very often of poor quality in such
circumstances. We give a few examples.

3.1. Non-Gaussian processes

We follow Yves Meyer and introduce the Ramp process X(t), t ∈ [0, 1), with
periodic sample paths defined by

X(t) = t − 1(t ≥ τ), (3.1)

where τ is drawn uniformly at random in [0, 1). The sample path increases
linearly from 0 to τ in the interval [0, τ), is decreased by 1 at t = τ , and
increases linearly from τ − 1 to 0 in the interval [τ, 1). This process is
very simple, and estimating X from noisy data is an exercise in parametric
statistics. Without calculating Bayes’ rule, one could recover X by simply
estimating the location of the discontinuity.

The best linear estimator is given by the Wiener filter. To calculate the
Karhunen–Loeve decomposition of X, Meyer observes that the covariance
matrix is given by

Cov(X(s)X(t)) = min(s, t) − st,

and is the same as that of the Brownian bridge B(t) = W (t)− tW (1) where
W is a Brownian motion. Since (

√
2 sin(πkt))k≥1 are the eigenfunctions of

the covariance matrix of the Brownian bridge with eigenvalues d2
k = (πk)−2,

the best linear estimator would operate by linearly shrinking the Fourier
coefficients of Y (dt) = X(t) dt+εW (dt). Obviously, this is a poor estimation
strategy since, to achieve a small MSE, partial Fourier series would need to
give very good approximations of the sample paths of the process X with
just a few terms (we will elaborate on this later). But the slow decay
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of the eigenvalues of the covariance matrix says that this is not the case.
This is an instance of the well-known Gibbs phenomenon, which asserts
that partial Fourier series provide poor reconstructions of otherwise smooth
signals with isolated singularities. Quantitatively, the MSE of the Wiener
filter is given by

MSE(X, X̂) =
∑

k≥1

d2
kε

2

d2
k + ε2

≥ 1

2

∑

k≥1

min(d2
k, ε

2), (3.2)

since a2b2/(a2 + b2) ≥ 1
2 min(a2, b2) for all a, b ∈ R, with equality when

a = b. With d2
k = (πk)−2, this gives

MSE(X, X̂) =
∑

k≥1

d2
kε

2

d2
k + ε2

≥ ε/π.

To drive the point home, recall the asymptotic calibration ε = 1/
√

n, which
says that if we were to think about this estimation in the sampled data
model, the MSE would scale like 1/

√
n, where n is the sample size. This is

substandard since we are dealing with a parametric problem for which there
are estimators converging at the parametric rate of about 1/n (or about ε2).

3.2. Other functional classes

Suppose now that we are interested in estimating objects with bounded
variations. A function with finite bounded variations is a function whose
first derivative is a signed measure with finite mass. Then it turns out that,
for this functional class, any estimator which asymptotically achieves or
nearly achieves the minimax risk must be nonlinear. There are many such
examples. Suppose the functional class is defined via

F = {f : ‖f‖W m
p

≤ R},

where ‖ · ‖W m
p

is the Lp-Sobolev norm

‖f‖2
W m

p
:=

∫

[0,1]
|f(t)|p + |f (m)(t)|p dt. (3.3)

When m = 1 and p = 1, this definition is close to the bounded variation
norm (with the proviso that the first derivative may not be an integrable
function). In Section 2.4, we have seen that if p = 2, there is a clean
solution which achieves the minimax risk and that this solution is linear.
When p < 2, however, any estimator whose risk scales like the minimax
risk as ε → 0 must be nonlinear. In other words, linear estimators achieve
markedly suboptimal rates of convergence.

Geometrically suppose that one is interested in estimating the mean vec-
tor θ from the data yk = θk+σzk, where the zks are i.i.d. N(0, 1). Then, if Θ
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is an ellipsoid, linear estimation is all-powerful! But suppose Θ is the body

Θ :=

{
θ :

∑

k≥1

|θk| ≤ R

}
.

This is a convex body – an octahedron to be precise – but not an ellipsoid,
and this causes a substantial modification in what constitutes an optimal
or near-optimal estimation strategy.

3.3. Spatial adaptivity

Suppose that the function we wish to recover has a few isolated singularities
but is otherwise smooth, and that we employ a linear kernel smoother.
Suppose, further, that we have available an oracle which supplies the best
bandwidth, in the sense that it tells us which h yields the smallest MSE.
This optimal choice of the bandwidth comes from the classical bias/variance
trade-off: the smaller the bandwidth, the smaller the bias but the greater
the variance. On the one hand, to keep the bias low we would need to use a
small bandwidth, as otherwise the estimation error would be large, since one
would smooth away the discontinuities. But on the other hand, to keep the
variance low we would need to use a large bandwidth, as otherwise the error
would be large, since one would undersmooth the flat part of the object f .

To get out of this dead end, one would like to use, instead, a spatially
varying bandwidth. That is, one would like to be able to use a small band-
width when the estimand is rough or discontinuous and a larger bandwidth
when it is smooth or flat. That is, one could imagine using a spatially adap-
tive bandwidth which we would estimate from the data. This would turn
the overall estimation strategy into a nonlinear procedure. And if we could
somehow find the right bandwidth at every point, we could in principle
obtain much better MSEs.

3.4. Adaptive estimation

The asymptotically optimal estimator (2.21) is sensitive to the parameters
m and R which define the class F := {f : ‖f‖W m

2
≤ R}. Should these

parameters be mis-specified, statistical optimality would no longer hold. In
practice, however, one must confess that we would rarely know in advance
the exact degree of smoothness or the object we wish to estimate. And even
if we did, we would not know the exact size of the radius of the ball. Such
practical considerations suggest abandoning the idea of an asymptotically
exact estimator for a particular class in favour of estimators with nearly
optimal asymptotic properties simultaneously over a wide range of classes of
interest. Admittedly, this may seem like an overly ambitious goal. Perhaps
surprisingly, this is, however, possible in many interesting cases. The upshot
is that such estimators are nonlinear.
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4. Shrinkage estimators and oracle inequalities

In this section and the next, we consider the problem of estimating a (possi-
bly infinite) vector θ ∈ R

d from observations y ∼ N(θ, 1), and focus on the
statistical underpinnings of this problem. Only much later shall we identify
θ with the coefficient sequence of a function f in an appropriate basis, and
translate some of the decision-theoretic results in the language of nonpara-
metric function estimation. The importance of this section relies upon the
fact that it introduces the idea of an oracle inequality.

4.1. The James–Stein estimator

We wish to estimate θ ∈ R
d from y ∼ N(θ, I), and use the mean-squared

error to measure performance

MSE(θ̂, θ) = E‖θ̂ − θ‖2

(here and below ‖·‖ denotes the Euclidean norm). The maximum-likelihood

estimate (MLE) is of course given by θ̂MLE = y and obeys

MSE(θ̂MLE, θ) = d.

Everybody would agree that the MLE is a good estimator. After all, what
other estimator could we use in the absence of any additional information
about the parameter θ? The surprising discovery of James and Stein (1961)
is that when d > 2, the MLE is not admissible. That is, there exist esti-
mators which are more accurate than the MLE (or better than the sample
mean in the case where one gets independent copies of y). Consider, for
example, the estimator

θ̂JS = w(y) · y, w(y) =

(
1 − d − 2

‖y‖2

)

+

(4.1)

which shrinks the data y towards the origin. James and Stein proved that
θ̂JS obeys

MSE(θ̂JS, θ) < MSE(θ̂MLE, θ), for all θ ∈ R
d.

In words, the performance of the shrinkage estimator is superior to that
of the sample mean for all values of the parameter θ. This is surprising,
because y may measure seemingly unrelated quantities such as the taste
of clams and the age of the universe, to paraphrase Le Cam (2000). It is
therefore surprising that by mixing information about completely discon-
nected problems, one can obtain an estimator with a total mean-squared
error that is smaller than that one would obtain by considering each problem
separately.

This result has had an enormous influence on the field and is still difficult
to comprehend, although, by now, there are many papers that provide some
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explanations for this strange phenomenon: see, for example, the empirical
Bayes interpretation of Efron and Morris (1971). We will not attempt to
summarize this literature and, instead, merely note that nonlinear shrinkage
improves performance.

4.2. Ideal linear shrinkage estimator and oracle inequalities

It is time to revisit the main issue discussed thus far – although in an
abstract setting: how much should we smooth or, rather, how much should
we shrink? To estimate θ ∈ R

d from y ∼ N(θ, I), consider the family of
diagonal estimators

θ̂c = c · y
where c is a scalar. For each coordinate, recall that the bias θ̂c

k is given

by θk − Eθ̂c
k = (1 − c)θk and the variance obeys Var(θ̂c

k) = c2 so that

E(θk − θ̂c
k)

2 = (1 − c2)θ2
k + c2. Summing over coordinates gives

MSE(θ̂c, θ) = (1 − c)2‖θ‖2 + c2d.

We now search for an ideal estimator which selects that estimator θ̂c∗ from
the family (θ̂c)c∈R with minimal MSE: that is, c∗ is the solution to

min
c∈R

(1 − c)2‖θ‖2 + c2d.

Analytically, c∗ is given by

c∗ =
‖θ‖2

‖θ‖2 + d
,

and the ideal MSE obeys

MSE(θ̂c∗ , θ) =
‖θ‖2d

‖θ‖2 + d
.

This estimator is ideal because we would of course not know which estimator
θ̂c is best; that is, to achieve the ideal MSE, one would need an oracle that
would tell us which shrinkage factor to choose. The difference from the
James–Stein estimate is that θ̂JS is estimating the shrinkage factor from the
data y, while in the ideal scenario, the ideal shrinkage factor which depends
on ‖θ‖ is simply given to us. Obviously,

inf
c

MSE(θ̂c, θ) ≤ MSE(θ̂JS, θ).

But the interesting fact is that there is an equality in the other direction.

Theorem 4.1. The James–Stein estimate obeys

MSE(θ̂JS, θ) ≤ 2 + inf
c

MSE(θ̂c, θ). (4.2)
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In other words, the James–Stein estimator is almost as good as the ideal
estimator in a mean-squared error sense. When the dimension d is large,
the additive factor is small compared to the MSE of the MLE, which is
equal to d. The inequality (4.2) is an oracle inequality. An oracle inequality
relates the performance of a real estimator with that of an ideal estimator
which relies on perfect information supplied by an oracle, and which is not
available in practice. Oracle inequalities are a powerful concept that we
shall use extensively in the remainder of this paper.

To prove (4.2), one needs to come up with a formula, or at least with
an estimate for the MSE of the James–Stein estimate. Perhaps the most
elegant derivation is based on the Stein unbiased risk estimate, due to Stein
(1981), which goes as follows. Let Y ∼ N(θ, I) and consider the estimator
θ = Y + g(Y ) where g : R

d → R
d is a weakly differentiable function. Then,

under mild integrability assumptions,

E‖Y + g(Y ) − θ‖2 = E[d + 2∇ · g(Y ) + ‖g(Y )‖2], (4.3)

where ∇ · g(Y ) is the divergence of g, ∇ · g(Y ) :=
∑d

k=1 ∂kgk(Y ). To see
why this is so, observe that

E‖Y + g(Y ) − θ‖2 = E‖Y − θ‖2 + 2E(Y − θ)T g(Y ) + E‖g(Y )‖2.

Since E‖Y − θ‖2 = d, we only need to argue that

E(Y − θ)T g(Y ) = E∇ · g(Y ).

This follows from an integration by parts. Let φ(y) be the density function

of the standard multivariate normal distribution φ(y) = (2π)−n/2e−‖y‖2/2,
and recall that ∂kφ(y − θ) = −(yk − θ)φ(y − θ). Then, assuming that g is
sufficiently smooth,

E(Yk − θk)gk(Y ) =

∫

Rd

(yk − θk)gk(y)φ(y − θ) dy

=

∫

Rd

∂kgk(y)φ(y − θ) dy.

The idea is now to use the relation (4.3) to compute the MSE of the
James–Stein estimate. To avoid unnecessary technicalities due to the non-
differentiability of θ̂JS, we prove (4.2) with the slightly modified estimator

θ̂ = w̃(y)y, where w̃(y) = (1− (d−2)/‖y‖2); that is, we remove the positive

part. It seems intuitively clear that MSE(θ̂JS, θ) ≤ MSE(θ̂, θ), which is true.

With this notation, θ̂ = Y + g(Y ), where

g(Y ) = −d − 2

‖Y ‖2
Y.



Modern statistical estimation via oracle inequalities 279

Since

∇ · g(Y ) = −(d − 2)2

‖Y ‖2
,

the Stein unbiased risk formula reads

E‖Y + g(Y ) − θ‖2 = d − (d − 2)2 · E 1

‖Y ‖2
.

Set X = ‖Y ‖2, then EX = ‖θ‖2 + d, and since the function 1/x is convex,
Jensen’s inequality yields

E
1

X
≥ 1

EX
=

1

‖θ‖2 + d
.

In other words, this would give

E‖θ̂JS − θ‖2 ≤ d − (d − 2)2

‖θ‖2 + d
≤ 4 + inf

c
E‖θc − θ‖2.

This is not exactly the content of (4.2) since we have an additive factor
of 4 instead of 2. To improve on this, we need a sharper lower bound on
E‖Y ‖−2. More work would show that

E
1

‖Y ‖2
≥ 1

d − 2 + ‖θ‖2
,

where the equality holds if θ = 0. This sharper estimate would give (4.2).
We refer the reader to Johnstone (2002) for details.

4.3. Ideal shrinkage and adaptive estimation

Returning to the theme of nonparametric estimation, there is a beauti-
ful application of such oracle inequalities. We have seen that one can
find asymptotically minimax estimators for L2-Sobolev balls of the form
Fm(R) = {f : ‖f‖W m

2
≤ R}. Pinsker’s solution requires knowledge of

m and R, but in practice these are unknown. Is it possible to achieve
asymptotic minimaxity over Fm(R), simultaneously for each value of m
and R > 0?

Taking the sequence space viewpoint, the problem is equivalent to that
of estimating the Fourier coefficients (θk) of f from the Gaussian sequence
model

yk = θk + εzk, (4.4)

where the infinite-dimensional vector θ belongs to the ellipsoid

Θ =:

{
θ :

∑

j≥0

∑

k∈Bj

(1 + k2m)|θk|2 ≤ R2

}
. (4.5)
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In the above expansion, we have partitioned the sum into blocks which we
assume are dyadic sub-bands

Bj := {k ≥ 0 : 2j ≤ k < 2j+1}.
That is, the block Bj is the family of all those Fourier coefficients with
frequency indices in the dyadic interval [2j , 2j+1). This partitioning goes
back a long way in harmonic analysis and was first introduced by Littlewood
and Paley (see Frazier, Jawerth and Weiss (1991)) to study the property of
functions and of their Fourier series.

Let dj = 2j be the size of the jth block Bj . With this notation, we
introduce the block James–Stein estimator defined by

θ̂BJS
j (y) =






yj , j < J0,(
1 − (dj−2)ε2

‖yj‖2

)

+
yj , J0 ≤ j < Jε,

0, j ≥ Jε.

(4.6)

For example, one can set J0 = 2, and Jε to be the nearest integer to
log2(1/ε2). The interpretation is that the very low-frequency components
are untouched, the intermediate-frequency components are shrunk towards
zero, and the high-frequency components are thrown away. In summary, the
function f(t) is estimated by (1) taking the data in the frequency domain,
(2) applying the James–Stein estimator to each dyadic sub-band Bj , and
(3) returning to the original time domain.

A remarkable result due to Efrŏımovich and Pinsker (1984) shows that
the block James–Stein estimator is asymptotically minimax over all Sobolev
ellipsoids.

Theorem 4.2. For all ellipsoids of the form (4.5), the MSE of the block
James–Stein estimator (4.6) obeys

sup
θ∈Θ

MSE(θ̂BJS, θ) ≤ 22mM∗(ε, Θ)(1 + o(1)), (4.7)

where o(1) is a term tending to zero as ε → 0. In fact it is possible to get
asymptotic minimaxity, namely,

sup
θ∈Θ

MSE(θ̂BJS, θ) = M∗(ε, Θ)(1 + o(1)),

by choosing shorter (but not too short) blocks Bj = {k : ℓj ≤ k ≤ ℓj+1}
obeying ℓj+1/ℓj → 1.

The intuition is as follows. Suppose that we have a block Bj = {k : ℓj ≤
k ≤ ℓj+1} obeying ℓj+1/ℓj → 1, and let θj be the vector (θk)k∈Bj

. The key
point is that to estimate the coordinates of θj , an estimator of the form

θ̂j
k = cj · yk,
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with weights depending on the block index, but not on the individual co-
efficients within a block, is almost as efficient as any other estimator. To
understand this, one can check that Pinsker’s (optimal) weights are nearly
constant on each block for sufficiently large j. With the notation of Sec-
tion 2.4, this is indeed a consequence of supk,k′∈Bj

ak/ak′ = (ℓj+1/ℓj)
m → 1.

Continuing at this informal level of discussion, it follows that if we could
find the best block-dependent shrinkage factor, then we would do very well.
But we have seen that this is precisely what the James–Stein estimate does
(Theorem 4.1). Thus θ̂BJS is efficient and provably asymptotically minimax:
see Johnstone (2002) for a rigorous argument. When one uses dyadic blocks,
ℓj+1/ℓj → 2 and the weights are not nearly constant but vary within a factor
2m. Replacing these variable weights with a constant weight is responsible
for the slight loss in precision; compare (4.7).

5. Ideal shrinkage and thresholding rules

All of the estimators we have encountered so far are based on the belief that
large coefficients occur at low frequencies. As a consequence, high-frequency
components are systematically shrunk toward zero. We remarked earlier
that signals of interest may exhibit significant high-frequency components
because of singularities or otherwise. Why should we then enforce shrinkage
if the data provide evidence that some special high-frequency components
are statistically significant or unlikely to be noise?

To makes things concrete, consider an extreme example, where θ ∈ R
n is

of the form

θ = (0, . . . , 0, µ, 0, . . . , 0),

where µ 	= 0 and the location of the nonzero coordinate is not known in
advance. Then it is clear that linear estimators would be highly ineffective
in this setting. The James–Stein estimator, which is essentially a linear
estimator – albeit with a nonlinear data-dependent shrinkage factor – would
also be very ineffective. This section introduces thresholding rules which are
true nonlinear estimation procedures, and which perform very well in this
setting and, of course, in much more complicated settings as well.

5.1. Ideal shrinkage

We consider the same Gaussian sequence model (4.4), where we think of
(θk)1≤k≤n as the coefficient sequence of f in a fixed basis (ψk(t))1≤k≤n. To
recover θ ∈ R

n from y ∼ N(0, ε2 I), we now consider the family of diagonal
shrinkage estimators

θ̂w = Wy ⇔ θ̂k = wkyk
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where W = diag(wk). Just as before, we consider the ideal estimator θ∗

which minimizes the MSE among all diagonal shrinkage estimators

θ∗ = argminw∈RnE‖θ̂w − θ‖2.

Note that we have already computed θ∗, since for each coordinate k, the
optimal weight w∗

k minimizes the trade-off between the squared bias and the
variance

E(wkyk − θk)
2 = (1 − wk)

2θ2
k + w2

kε
2

whose solution is given by

w∗
k =

θ2
k

θ2
k + ε2

, and E(θ̂∗k − θk) =
θ2
kε

2

θ2
k + ε2

.

Closely related is the ideal projection estimator θI , where we additionally
require that W be a projection matrix. This condition simply says that the
weights wk are either 0 or 1,

θI = argminw∈{0,1}nE‖θ̂w − θ‖2.

A simple calculation then shows that

θI
k = wkyk, wk =

{
0, |θk| < ε,

1, |θk| ≥ ε.

This is a keep-or-kill estimate. The interpretation is that, for wk = 1,
wkyk has vanishing bias and a variance equal to ε2, while for wk = 0, wkyk

has bias θk and vanishing variance. The optimal choice then minimizes
between the squared bias and the variance and, therefore, the risk of the
ideal projection is given by

E(θI
k − θk)

2 = min(θ2
k, ε

2).

We have already seen that for a, b ≥ 0, ab/(a + b) ≤ 2min(a, b) and thus

E(θI
k − θk)

2 ≤ 2min(θ2
k, ε

2),

which gives

MSE(θ∗, θ) ≤ MSE(θI , θ) ≤ 2 MSE(θ∗, θ).

In short, the risk of the ideal projection comes within a factor of 2 of that
of the ideal shrinkage estimator. From now on, it will be convenient to
compare the risk of any real estimator with that of the ideal projection
which obeys

MSE(θI , θ) =
∑

k

min(θ2
k, ε

2). (5.1)

We then ask the question: is it possible to find estimators whose risk comes
close to that of the ideal projection?
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5.2. Thresholding rules

In the spirit of the ideal projection, we consider thresholding rules for es-
timating the mean of a Gaussian distribution. There are many such rules,
and we focus on the most commonly studied rules, namely the so-called
hard-thresholding and soft-thresholding rules. For other types of thresh-
olding rules, consider the garrote method of Gao (1998), for example. A
hard-thresholding rule is of the form

θ̂k =

{
yk, |yk| ≥ λ,

0, |yk| < λ,
(5.2)

where λ is a some positive scalar parameter. A hard-thresholding rule yields
a keep-or-kill estimate. Observations which pass the threshold are consid-
ered significant and untouched, while all observations below the threshold
are set to zero. A soft-thresholding rule is similar but performs additional
shrinkage:

θ̂k =






yk − λ, yk ≥ λ,

0, |yk| < λ,

yk + λ, yk < −λ.

(5.3)

That is, the significant observations are also pulled towards zero by an
amount equal to λ. We note that a soft-thresholding θ̂(y) rule is a continuous
function of y while the hard-thresholding rule is not. In this sense, the soft-
thresholding rule is a smoother rule, hence the name.

The hard- and soft-thresholding rules also have an interpretation as mini-
mum complexity estimates for complexity penalties which are not quadratic.
For example, the hard thresholding rule at level λ is the solution to

min
τ∈R

(yk − τ)2 + λ2 · 1(τ 	= 0),

while the soft-thresholding rule solves

min
τ∈R

(yk − τ)2 + 2λ · |τ |.

For n-dimensional problems, hard-thresholding each coordinate at level λ
solves the variational problem

min
τ∈Rn

‖y − θ‖2 + λ2 · ‖τ‖ℓ0 ,

where ‖τ‖ℓ0 :=
∑

1≤k≤n 1(τk 	= 0) is the number of nonzero components of τ .
Similarly, soft-thresholding each coordinate at level λ solves the variational
problem

min
τ∈Rn

‖y − θ‖2 + 2λ · ‖τ‖ℓ1 ,

where ‖τ‖ℓ1 :=
∑

1≤k≤n |τk|. Hence, thresholding rules may be thought of
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as a complexity-penalized estimation procedure where the complexity of the
fit is nonquadratic and given either by the ℓ0 or the ℓ1-norm.

5.3. Oracle inequalities

A foundational result in modern estimation is that correctly tuned thresh-
olding rules nearly achieve the risk of ideal projections.

Theorem 5.1. (Donoho and Johnstone) Suppose that n ≥ 2 and set

λ = ǫ
√

2 log n. Assume that y ∼ N(θ, ε2In) and let θ̂ be either a hard- or
soft-thresholding estimate with parameter λ. Then

E‖θ − θ̂‖2 ≤ (2 log n + 1) ·
(

ε2 +
n∑

k=1

min(θ2
k, ε

2)

)
. (5.4)

To sum up, the risk of a thresholding estimator is at most 2 log n times
larger than the ideal mean-squared error. Further, what is interesting here
is that the oracle inequality (5.4) is nonasymptotic and holds for any finite
sample size n ≥ 2. Finally, we have seen somewhat sharper oracle inequali-
ties where the multiplicative factor is actually equal to one (see (4.2)), and
it is therefore legitimate to ask whether the logarithmic factor is sharp. It
turns out that without any further assumptions on the parameter θ, the
logarithmic factor is optimal – in an asymptotic sense.

Theorem 5.2. (Donoho and Johnstone) Consider the class of diago-

nal estimators obeying θ̂k = θ̂k(yk). Under the same assumptions as before,

inf
θ̂ diagonal

sup
θ∈Rn

E‖θ − θ̂‖2

ε2 +
∑

k min(θ2
k, ε

2)
→ 2 log n as n → ∞. (5.5)

The above result says that when the parameter space of interest is R
n,

then from a minimax point of view, no diagonal estimator can essentially
do better, at least asymptotically.

5.4. Risk of thresholding rules

This section gives a proof of Theorem 5.1 for the soft-thresholding rule. The
proof for the hard-thresholding rule is similar and is only more technical.
We may also just assume that ε = 1 as the general case follows from a
simple rescaling argument.

We need to develop a formula for the risk of a scalar soft-thresholding
rule and introduce some notation. We let ηS be the scalar nonlinearity
ηS(y) = sgn(y)(y − λ)+ and let rS(λ, µ) be the risk of the soft-thresholding
rule ηS , i.e.,

rS(λ, µ) = E(ηS(y) − µ)2, y ∼ N(µ, 1).
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Because soft-thresholding rules treat each coordinate separately, the idea
of the proof is to develop an upper bound on the accuracy of scalar thresh-
olding rules for µ = 0 in a first step, and to use the bound to deduce a
bound for all values of µ ∈ R in a second step. This strategy uses the
following lemma.

Lemma 5.3. The risk of the soft-thresholding rule obeys

rS(λ, µ) ≤ rS(λ, 0) + min(µ2, 1 + λ2). (5.6)

Proof. The proof is an exercise in calculus. By symmetry, we may just as
well assume that µ ≥ 0. Note that

rS(λ, µ) =

∫
(ηS(y) − µ)2 φ(y − µ) dy

= µ2

∫

|y|≤λ
φ(y − µ) dy +

∫

y>λ
(y − λ − µ)2 φ(y − µ) dy

+

∫

y<−λ
(y + λ − µ)2 φ(y − µ) dy,

where φ(y) = (2π)−1/2e−y2/2. A change of variables then gives

rS(λ, µ) = µ2

∫ λ−µ

−λ−µ
φ(z) dz+

∫ ∞

λ−µ
(z−λ)2 φ(z) dz+

∫ −λ−µ

−∞
(z+λ)2 φ(z) dz,

which shows that the derivative with respect to µ obeys

∂µrS(λ, µ) = 2µ

∫ λ−µ

−λ−µ
φ(z) dz ≤ 2µ.

Therefore, rS(λ, µ) is increasing in µ, and on the one hand

rS(λ, µ) ≤ lim
µ→∞

rS(λ, µ) = 1 + λ2.

On the other hand,

rS(λ, µ) − rS(λ, 0) ≤
∫ µ

0
2u du = µ2,

and we conclude that

rS(λ, µ) ≤ min(rS(λ, 0) + µ2, 1 + λ2),

which proves the lemma.

It is interesting to note that we established an estimate which is slightly
better than (5.6). The quantity min(r(λ, 0)+µ2, 1+λ2) is of interest because
one can prove that this is a proxy for the risk of the soft-thresholding rule
since there is an inequality in the other direction:

rS(λ, µ) ≥ 1

2
min(rS(λ, 0) + µ2, 1 + λ2). (5.7)
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In other words, the risk of soft-thresholding is just about min(rS(λ, 0) +
µ2, 1 + λ2).

The second lemma develops a bound on rS(λ, 0).

Lemma 5.4. The risk of the soft-thresholding rule obeys

rS(λ, 0) ≤ 2φ(λ)

λ
. (5.8)

Proof. By symmetry of the Gaussian distribution, the risk rS(λ, 0) obeys

rS(λ, 0) = 2

∫

y>λ
(y − λ)2 φ(y) dy,

and an integration by parts shows that
∫

y>λ
(y − λ)2 φ(y) dy = −λφ(λ) + (1 + λ2)Φ([λ,∞)),

where Φ([λ,∞)) =
∫
y∈[λ,∞) φ(y) dy. The claim then follows from

Φ([λ,∞)) ≤
∫ ∞

λ
φ(y) dy ≤

∫ ∞

λ

y

λ
φ(y) dy =

φ(λ)

λ
.

We now specialize (5.6) and (5.8) to λ =
√

2 log n, which gives

rS(
√

2 log n, 0) ≤ 1

n
√

π · log n
≤ 2 log n + 1

n
,

as soon as n ≥ 2. This proves Theorem 5.1 since

E‖θ − θ̂‖2 ≤ n · rS(
√

2 log n, 0) +
∑

k

min(θ2
k, 1 + 2 log n)

≤ (1 + 2 log n) +
∑

k

min(θ2
k, 1 + 2 log n)

≤ (2 log n + 1)

(
1 +

∑

k

min(θ2
k, 1)

)
,

as claimed.

5.5. Choice of threshold

Besides the fact that λ =
√

2 log n allows proving sharp estimation results,
there is a large literature arguing why this is intuitively the correct threshold
for the Gaussian model. One explanation is as follows. Suppose that θ is
identically equal to zero, i.e., θi = 0 for all is. In the language of signal
estimation, this assumption states that there is no signal and that y is just
white noise, y ∼ N(0, In). Then one would like to declare that there is

no signal, i.e., we would like to have an estimator obeying θ̂i = 0 for all
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is with large probability. In the language of tests of hypotheses, we would
like to accept the null hypothesis (which postulates that there is no signal)
with large probability whenever the null is true. From this standpoint, one
should select a threshold λ so that

P (max
i

|zi| > λ) ≤ α, zi i.i.d. N(0, 1),

where α is a tolerance set in advance. In other words, λ should be a quantile
of the distribution of the maximum absolute value of n i.i.d. standard normal
random variables. It is well known (Williams 1991), however, that

lim
n→∞

max1≤i≤n |zi|√
2 log n

= 1 almost surely,

which justifies the choice of threshold in an asymptotic sense.
This can be made a little more quantitative. In fact, it is possible to show

that

lim
n→∞

P( max
1≤i≤n

|zi| >
√

2 log n) = 0,

which shows that asymptotically P(θ̂ = 0) → 1 as n → ∞ whenever θ = 0.
Introduce the indicator variables

Ik(λ) =

{
1, |zk| ≥ λ,

0, |zk| < λ.

Then

P(max
k

|zk| > λ) ≤
∑

k

E[Ik(λ)] = n · P(|z1| > λ) ≤ 2n
φ(λ)

λ
,

which gives

P(max
k

|zk| >
√

2 log n) ≤ 1√
π · log n

,

and the right-hand side tends to zero as n tends to infinity. Conversely, for a
fixed threshold λ, the expected number of observations above λ in absolute
value obeys

∑

k

E[Ik(λ)] = n · E[I1(λ)] = n · Φ([λ,∞)) ≥ 2n · φ(λ)

λ
·
(

1 − 1

λ2

)
.

This shows that for λ slightly smaller than
√

2 log n, i.e., λ = (1−δ)·
√

2 log n
for some δ > 0, the number of expected white noise coordinates above
threshold tends to infinity as n increases.

Having said all this, one still needs to keep in mind that the
√

2 log n
threshold is driven by asymptotic considerations. In practice, this choice
tends to be a little too conservative, in the sense that its bias has a tendency
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to be a little too large. That is, many coordinates in which the value of θk

is potentially large are set to zero. In statistical terms, the burden of proof
to be deemed ‘estimable’ is perhaps not as reasonable as one would want.
We shall later discuss more flexible and adaptive choices of threshold.

5.6. Example: estimating a very sparse vector

Thresholding is very effective for estimating sparse vectors θ ∈ R
n, i.e.,

vectors which only have a few significant coordinates with unknown a priori

locations. We illustrate this with a simple toy example. We observe

yk = θk + zk, zk i.i.d. N(0, 1), k = 1, . . . , n,

and suppose that all the coefficients are zero except for two spikes, each
of size µ =

√
n/2. (We have adjusted the heights of the spikes so that

‖θ‖2 = n = E‖z‖2, so that the signal to noise ratio is one.) The James–
Stein estimate is highly ineffective in this setting since the risk of the ideal
shrinkage estimator θ̂∗ = c∗y studied in Section 4 obeys

E‖θ − θ∗‖2 ≥ n/2. (5.9)

Note that the risk of the MLE is n.
In contrast, consider the risk of a hard-thresholding rule with λ=

√
2 log n.

(1) The two observations corresponding to the spikes pass the threshold
with overwhelming probability; for each coordinate, the risk is thus
about equal to the variance which is one. Formally, for any such coor-
dinate, the risk is equal to

µ2
E1{|Z + µ| < λ} + E[Z21{|Z + µ| > λ}] ≤ µ2

E1{|Z + µ| < λ} + 1,

where Z is a standard normal random variable. Now, because µ =√
n/2 and E1{|Z + µ| < λ} is ridiculously small, i.e., exponentially

decaying in n, the risk is about 1.

(2) In all other coordinates, the estimator sets all the data to zero except
for a possibly minuscule fraction of noise realizations exceeding the
threshold. For each such coordinate, the risk obeys

E[Z21{|Z| > λ}] ≤ 2(λ + λ−1)φ(λ) =
2√
π
·
√

log n

n
.

In conclusion, the risk of the hard-thresholding rule is about

E‖θ̂ − θ‖2 � 2 + (n − 2)
1.13

√
log n

n
≈ 2 + 1.13

√
log n,

which is far better than (5.9).
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More generally, the oracle inequality guarantees that if the mean vector
θ is sparse in the sense that it has S nonzero and ‘significant coordinates’,
then the mean-squared error of the thresholding rule obeys

E‖θ̂ − θ‖2 ≤ (2 log n + 1) · (S + 1),

which, ignoring the log-factor, is the MSE one would obtain if one had an
oracle supplying perfect information about the location of those significant
coordinates. In conclusion, thresholding is very effective when the mean
vector is sparse – when there is a comparably small number of large coeffi-
cients at unpredictable locations so that one cannot say a priori where the
‘significant coefficients’ will be.

6. Interactions with modern harmonic analysis

We have seen that thresholding comes close to the ideal risk (5.1) so that
one can think of the ideal risk as a proxy for the performance of thresholding
estimators in the white noise model.

6.1. Interpretation of the ideal risk

We now give an interpretation of the ideal risk which links statistical esti-
mation to other contemporary topics. We rearrange the coefficient sequence
(θ1, . . . , θn) in decreasing order of magnitude |θ|(1) ≥ |θ|(2) ≥ · · · ≥ |θ|(n) and
let N(ε) be the number of those coefficients whose absolute value exceeds
the noise level ε:

N(ε) = # {k : |θk| ≥ ε}.
With this notation, one can express the ideal risk as

∑

k

min(θ2
k, ε

2) = N(ε) · ε2 +
∑

k>N(ε)

|θ|2(k)

= N(ε) · ε2 + e2
N(ε)(θ),

where for a fixed number B, e2
B(θ) is the approximation obtained by keeping

the B largest coefficients of θ:

eB(θ)2 = ‖θ − θB‖2;

θB is the truncated vector equal to the B-largest value of θ and zero other-
wise. In other words, the proxy for the risk is simply equal to the number
of terms above the noise level times the squared noise level plus the approx-
imation error.

The interpretation is now self-evident. Suppose we are interested in esti-
mating an object f and that θ is the coefficient sequence of f in an ortho-
basis B. Then the mean-squared error of the thresholding estimator in this



290 E. J. Candès

basis is small if and if the signal f is compressible in this basis. That is,
if and only if it is possible to obtain an accurate approximation of the sig-
nal f with a superposition of just a few selected elements from the basis B.
This links nonparametric estimation with nonlinear approximation theory, a
subject concerned with methods for finding good approximations to various
classes of functions.

It is also interesting to compare the ideal risk with the risk of a linear

projection

θ̂L
k =

{
yk, k ∈ M,

0, otherwise,

where the set M would be set in advance (for example, a set corresponding
to low-frequency waveforms). The MSE of this projection obeys

E‖θL − θ‖ ≤ #Mε2 +
∑

k/∈M

|θk|2,

where the second term of the right-hand side is of course the linear approx-
imation error. The performance of linear projection procedure depends on
the precision of linear approximation, while that of thresholding depends
on that of nonlinear approximation. Because nonlinear approximation is in
general much more precise than linear approximation, thresholding rules are
usually far more accurate than the linear estimation strategies we discussed
earlier.

There is also a connection to the problem of data compression in infor-
mation theory. Consider encoding a function f ∈ R

n (a digital signal or a
digital image) by the method of wavelet transform coding. First, one quan-
tizes its wavelet coefficients θk = 〈f, ψk〉 into integers nk using a uniform
quantum q: for example, one rounds up the coefficients to the nearest mul-
tiple of 2q. One encodes the positions and values of the nonzero coefficients
as bit strings by standard devices (run-length coding and so forth). Later,
an approximate reconstruction of f can be obtained from f q = 2q

∑
k nk ψk.

Here we retain the index q to remind us that the quantization stepsize q
controls the behaviour of the algorithm. This coding method has distortion
δ(q) obeying

δ(q) ≤ N(q)q2 +
∑

k>N(q)

|θ|2(k) = N(q) · q2 + e2
N(q)(θ), (6.1)

and is the ideal risk with the quantum playing the role of the noise level.

6.2. Sparsity

From a certain viewpoint, statistical estimation, nonlinear approximation,
and data compression are closely related. For example, the quality of
estimation by thresholding rules depends on the sparsity of the coefficient
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sequence (θk)k≥1. One measure of sparsity is the Marcinkiewicz weak-ℓp

norm defined by

‖θ‖wℓp
:= sup

k≥1
k1/p |θ|(k). (6.2)

(In all rigour, ‖ · ‖wℓp
is only a quasi-norm in the sense that it does not

obey the triangle inequality, but only ‖θ0 +θ1‖wℓp
≤ cp · (‖θ0‖wℓp

+‖θ1‖wℓp
)

where cp is a constant which can be calculated explicitly.) Suppose that
‖θ‖wℓp

< ∞, then the reordered entries of the possibly infinite sequence

(θk)k≥1 decay at least as fast as k−1/p; the smaller p, the faster the decay.
We will be interested in bounded sequences in the weak-ℓp norm

wℓp(R) = {(θk) : |θ|(k) ≤ R · k−1/p, for all k ≥ 1},

which are those sequences that exhibit a special power law decay. Note that
weak-ℓp balls are slightly larger than corresponding ℓp balls

ℓp(R) ⊂ wℓp(R), ℓp(R) :=

{
(θk),

∑

k

|θk|p ≤ Rp

}
.

Weak-ℓp norms are useful because the decay of the ideal risk, as ε → 0,
or of the approximation error eB(θ), as B → ∞, are simply deduced from
membership of wℓp(R). We follow Donoho (1993), and introduce norms
which measure the precision of nonlinear approximation and the size of
the ideal risk. To measure the asymptotics of approximation/compression,
define the quasi-norm

‖θ‖c,m = sup
k≥1

km · ek(θ),

which says that ‖θ‖c,m is finite if and only if the approximation error ek(θ)
obeys ek(θ) = O(k−m). In a similar fashion, we introduce a quasi-norm to
measure the scaling of the ideal risk

‖θ‖e,r = sup
ε>0

(
ε−2r ·

∑

k

min(θ2
k, ε

2)

)1/2

,

which says that ‖θ‖e,r is finite if and only the ideal risk is O(ε2r).

Lemma 6.1. (Donoho 1993) Let p > 0 and set m = 1/p − 1/2 and
r = 2m

2m+1 . Then all these quasi-norms are equivalent: there exist positive
finite constants ci(p) such that

c0(p)‖θ‖c,m ≤ ‖θ‖wℓp
≤ c1(p)‖θ‖c,m,

c2(p)‖θ‖e,r ≤ ‖θ‖wℓp
≤ c3(p)‖θ‖e,r.
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The assertions that |θ(k)| = O(k−1/p), or ek(θ) = O(k−m), or the ideal

risk is O(ε2r) are, therefore, all roughly equivalent. Sparsity implies good
compressibility, which in turn implies good estimation.

6.3. Minimax estimation of weak-ℓp balls

Consider the infinite Gaussian model (4.4) and suppose θ ∈ Θ ⊂ wℓp(R).
Lemma 6.1 shows that the ideal risk obeys

∑

k

min(θ2
k, ǫ

2) = O((ǫ2)
2m

2m+1 ), 1/p =: m + 1/2.

If one further makes an extra assumption on Θ, which roughly says that the
large coefficients of θ ∈ Θ do not occur at infinity, thresholding achieves the
ideal risk up to a multiplicative logarithmic factor scaling like O(log ε). For
example, assume that

∑

k>nε

|θk|2 = O(ε2r), (6.3)

where nε grows at most polynomially in ε. Then set

θ̂k =

{
η(yk), k ≤ nε,

0, k ≥ nε,

where η is a thresholding rule at λ = ε ·
√

2 log nε; we threshold the co-
efficients in the zone k ∈ [1, nε] and throw out the others. Then the oracle
inequality (5.4) together with (6.3) give

E‖θ̂ − θ‖2 ≤ O(log ε) · (ǫ2)
2m

2m+1 . (6.4)

To develop lower bounds, we use a standard argument, which consists in
embedding large hypercubes or hyper-rectangles in Θ. Suppose that

ℓp,+(R) ⊂ Θ,

where this means that Θ contains n-dimensional hyper-rectangles of the
form [0, R n−1/p]n for arbitrary large n. Then the minimax risk obeys

inf
θ̂

sup
Θ

E‖θ̂ − θ‖2 ≥ inf
θ̂

sup
ℓp,+(R)

E‖θ̂ − θ‖2,

and we will show that the minimax risk over the hyper-rectangle is bounded
below by

inf
θ̂

sup
ℓp,+(R)

E‖θ̂ − θ‖2 ≥ c · Rp · (ǫ2)
2m

2m+1 , (6.5)

for some positive constant c > 0.
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To establish (6.5), we choose a prior π which is supported on the vertices
of the hyper-rectangle

H :=
∏

k

[0, τk] ⊂ Θ,

and defined by

θk =

{
0, with probability 1/2,

τk, with probability 1/2,

with independent coordinates so that informally π(θ) =
∏

k π(θk). Since
the coordinates are independent, any given coordinate does not give any
information about any other and, therefore, good procedures treat each
coordinate individually. In fact, we have already seen that Bayes’ rule is
indeed given by

θ̂π,k = E(θk | yk).

Suppose that the rectangle is tuned so that the sidelength is about equal
to the noise level, i.e., we pick nε as the largest integer obeying

R n−1/p
ε ≤ ε,

so that nε ≈ Rpε−p. It follows from the choice of parameters that θk = 0
with probability 1/2 and θk ≈ ε with probability 1/2. Assume for simplicity
that θk = ε with probability 1/2. A simple rescaling argument shows that

E(θ̂π,k − θk)
2 = B · ε2,

where B is the Bayes risk of estimating θk ∈ {0, 1} from yk ∼ N(θ, 1) with a
prior which puts equal probability on both outcomes. Therefore, with this
choice of prior on the hyper-rectangle, the Bayes risk obeys

B(π) ≥ B · nε · ε2 ≈ B · Rp · ε2−p

= B · Rp · (ε2)
2m

2m+1 ,

as claimed.
In closing, we have thus established that the minimax risk of weak-ℓp

balls with the tail property (6.3) is at most within a logarithmic factor of
the ideal risk, and that thresholding rules are nearly minimax since they are
also within a logarithmic factor of the ideal risk.

6.4. Statistical estimation and harmonic analysis

The consequence of these results is that the problem of finding efficient
representations becomes central now that the benefits of sparsity are well
understood. The goal is then (1) to identify problems and object classes of
scientific interest, and (2) to find efficient representations (orthobases) for
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those classes. Once such orthobases are constructed, one simply transforms
the data into those bases, applies thresholding, and inverts the transforma-
tion to separate signal from noise. The best basis to use is of course that in
which the objects considered have the sparsest representation. Additionally,
one might be interested in representations with fast algorithms for computa-
tional efficiency. These are the areas of preoccupation of modern harmonic
analysis and this is the reason why, over the last decade or so, there has
been, and still is, significant interaction between these two communities.

One such important development is that the program outlined above
has been perfectly executed when the functional classes under study be-
long either to the L2-Sobolev scale, the Lp-Sobolev scale, or the Besov and
Triebel–Lizorkin scales. All these spaces admit unconditional bases which
are especially well adapted to the estimation problem.

6.5. Optimality of unconditional bases

Assume we are given a function space with a norm ‖f‖F . Then an orthonor-
mal basis (φk)k is said to be unconditional for the normed space F if, for
all choices of signs,

∥∥∑
±kθk(f)ϕk

∥∥
F
≤ C · ‖f‖F ,

where (θk(f)) are the coefficients of f in the basis (φk). This says that
arbitrary changes of signs in the expansion do not change the norm by
much. Another way to put it is that there is an equivalent norm ‖θ‖f in the
sequence space

‖f‖F ∼ ‖θ(f)‖f

obeying

‖(±iθi)‖f = ‖θ‖f

for all choices of signs.
Define Θ as the image of the unit ball in the sequence space

Θ = {θ(f) : ‖f‖F ≤ 1},
and its critical exponent

p∗(Θ) := inf{p : Θ ⊂ wℓp}.
Then, for any orthogonal transform U , Donoho (1993) shows that

p∗(UΘ) ≥ p∗(Θ). (6.6)

For a fixed U , one should think of UΘ as the body of coefficients of the
unit ball in another basis. With this in mind, the interpretation is that,
among all orthobases, the unconditional basis is that which provides the
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sparsest coefficient sequence. As a consequence, if there is an unconditional
basis, this is the best orthonormal basis to use for nonlinear approximation
and for diagonal estimation, in the sense that it provides optimal rates of
approximation/estimation.

Fortunately, harmonic analysts have constructed unconditional bases for
some important cases of function spaces. Some notable examples are as
follows (Meyer 1992).

• Fourier bases are unconditional bases for L2-Sobolev spaces in any
dimension.

• Wavelet bases are unconditional bases for Lp-Sobolev spaces in any
dimension.

• Wavelet bases are unconditional bases for Besov and Triebel spaces in
any dimension. These spaces depend on 3 parameters (m, p, q) and are
extensions of Lp-Sobolev spaces which depend on the pair (m, p): see
Triebel (1992) for a definition.

6.6. The wavelet shrinkage

Suppose we wish to recover objects taken from a Besov or a Triebel body
from the data

Y (dt) = f(t) dt + εW (dt),

and seek an estimator f̂ which nearly achieves the minimax risk. Then
the answer is simply given by the celebrated wavelet shrinkage algorithm of
Donoho. We take a nice wavelet basis ψj,k(t), where j ≥ j0 indexes the scale
of the wavelet and k = 0, 1, . . . , 2j − 1 indexes the location of the wavelet,
go into the wavelet domain, and estimate the coefficients of f in the wavelet
basis via

θ̂j,k(y) =






yj,k, j = j0,

η(yj,k), j0 < j < jε,

0, j ≥ jε;

(6.7)

in the above equation, the yj,ks are the noisy coefficients, and η is a hard- or
soft-thresholding rule at the level λ = ε ·

√
2 log nε, where nε is the number

of coefficients to which the scalar nonlinearity applies. For example, one can
set jε to be the nearest integer to log2(1/ε2) so that nε ≈ 1/ε2. Inverting
the wavelet transforms gives the estimate

f̂(t) =
∑

j,k

θ̂j,kψj,k(t). (6.8)

This estimator has a simple structure since we just take the data in the
wavelet domain and throw out the small coefficients.
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As an example, suppose we are interested in the space of two-dimensional
functions on [0, 1]2 of bounded variation,

F := {f : ‖f‖BV ≤ 1}.
We recall that the bounded variation norm is given by ‖f‖BV =

∫
|df |.

Technically speaking, the space of functions of bounded variations does
not admit an unconditional basis, although it is tightly bracketed between
two Besov spaces with wavelet orthobases as unconditional bases. Letting
Θ = {θ(f), f ∈ F} be the coefficient sequence in a sufficiently nice wavelet
basis, it is possible to use embeddings of Besov spaces to show that

ℓ1,+(R) ⊂ Θ,

for some positive R > 0. As we have seen earlier, this immediately gives

inf
f̂

sup
F

MSE(f, f̂) ≥ c · ε.

The minimax risk of two-dimensional functions with controlled bounded
variations goes to zero as least as slowly as ε. In the other direction, a
result of Cohen, DeVore, Petrushev and Xu (1999) shows that the wavelet
sequence of a function with bounded variations belong to the weak-ℓ1 ball,
which gives that the ideal risk in our wavelet basis obeys

E‖θI − θ‖2 ≤ C · ε.
Since the wavelet shrinkage estimate f̂ (6.7)–(6.8) in a 2-dimensional basis
comes within a logarithmic factor of the ideal risk, we have

sup
F

E‖f − f̂‖2 = O(log ǫ−1) · inf
f̂

sup
F

MSE(f, f̂)

and it is, therefore, asymptotically near-optimal.

6.7. Adaptive minimaxity

The wavelet shrinkage algorithm does not really depend upon the para-
meters of the functional class one wishes to estimate, which in practice are
not known. To guarantee near-optimality, we simply need to work with a
basis which is unconditional for the functional class and correctly set the
thresholding zone. Seen a little bit differently, suppose first that we settle on
a nice wavelet basis. Our basis may not be an unconditional basis for all Lp-
Sobolev spaces or all Besov spaces, but it will be an unconditional basis for
many of them, e.g., for all Lp-Sobolev space with m ≤ m1 and p ≥ 1. (For
the specialist, the regularity of the wavelet limits the smoothness range over
which the fixed wavelet basis is unconditional.) Second, suppose that we
ignore small-scale coefficients, e.g., exceeding a fixed scale jε = log2(1/ε2)
which only depends upon the noise level. Then Donoho, Johnstone, Kerky-
acharian and Picard (1995) show that the wavelet shrinkage nearly achieves
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the asymptotic minimax risk for each value of the parameter m ∈ [m0, m1],
p, and R > 0 (R is the radius of the ball). This is another example of
adaption by an oracle inequality.

This universal aspect of wavelet shrinkage should not be understated. The
same algorithm is near-optimal simultaneously over a wide range of func-
tional classes and the performance automatically adapts to that one would
expect if one knew the functional class in advance. The wavelet shrinkage
may not be an exact solution to a tightly specified minimax problem but it
is an approximate solution for many interesting problems.

6.8. Challenges and limitations

In summary, we have seen that efficient representations lead to efficient
estimations, and that certain representations emerge as optimal. In addi-
tion, the same representation may very well solve many estimation problems
(adaptivity). The challenge is, therefore, to find optimal representations for
models of scientific interest. For those models, unconditional bases are,
however, unlikely . . .

7. Empirical model selection

We have just learned that thresholding in an unconditional basis is statisti-
cally near-optimal. Arguably, such results are very satisfying except for the
fact that, more often than not, unconditional bases are simply not avail-
able. For example, a commonly discussed and interesting model of images
without an unconditional is the class of functions f(x1, x2) ∈ �L2([0, 1]2),
which are twice differentiable away from edges with bounded curvature. To
say this slightly differently, our class is composed of objects that are dis-
continuous along smooth curves, i.e., edges, but otherwise smooth so that
one can think about such objects as cartoon-like images. This class and
many others do not admit unconditional bases and, therefore, one needs to
extend the tools for adaptive estimation to deal with these more common
situations. This section has two goals: (1) to develop more flexible estima-
tion strategies which go beyond coefficient estimation in a single basis, and
(2) to show that it is possible to deal with classes other than the traditional
smoothness classes.

7.1. Estimation with general dictionaries

Instead of being sparse in an orthobasis, a signal f(t) might be sparse in
a general dictionary D of waveforms denoted by D = (ϕi(t))i∈I , where I is
a finite or countable set. The elements ϕi(t) of D may not be orthogonal
or even linearly independent. Given such a dictionary, we will assume that
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one can write f(t) as the linear combination

f(t) =
∑

i

θiϕi(t),

where this expansion is not unique in the case where the dictionary D is
overcomplete (meaning that the ϕis are linearly dependent). As before, we
wish to recover an object from the sampled data model (2.8) or from the
continuous white noise model (2.18), and seek an estimator of the form

f̂(t) =
∑

i

θ̂iϕi(t). (7.1)

This problem is central in statistics since this is none other than the classical
multivariate regression problem, which we discuss next.

7.2. Model selection

To simplify matters, suppose that we have a finite problem and let Φ ∈
R

n×p denote the matrix whose columns are the individual waveforms ϕi(t),
t = 1, . . . , n, so that the sampled model assumes the form

y = Φθ + z,

where y is an n-dimensional vector of observations, and z ∼ N(0, σ2 In) is
white noise. Note that when the dictionary is overcomplete, one has p > n.
We are interested in estimating the object f = Φθ and measure performance
with the MSE

E‖Φθ − Φθ̂‖2 = E‖f − f̂‖2,

where f̂ = Φθ̂ is our estimate.
We turn our attention to ideas which generalize ideal projection rules.

Suppose we are given a subset M ⊂ {1, . . . , p} of coordinates, and denote
by V (M) the span of M, namely,

V (M) := {a ∈ R
p : ai = 0 for all i /∈ M}.

We then consider the least squares estimate which is the solution to

θ̂[M] = argmina∈V (M)‖y − Φa‖2.

For example, in the case where Φ is the identity matrix as in Section 5,
one would have θ̂[M]i = yi for i ∈ M and θ̂[M]i = 0 otherwise. What

is the risk of θ̂[M]? A classical computation which we shall not reproduce
here (the reader should really make sure that this is okay!) shows that the
MSE obeys

E‖Φθ − Φθ̂[M]‖2 = inf
a∈V (M)

‖Φθ − Φa‖2 + σ2|M|. (7.2)
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Again, this has an interpretation in terms of the classical bias variance
decomposition. The first term is the squared bias one gets by using only a
subset of columns of Φ to approximate the true object f = Φθ. The second
term is the variance of the estimator and is simply proportional to the size
of the model M.

7.3. Ideal model selection

Just as we selected the ideal projection or keep-or-kill estimate in Section 5,
we now introduce the ideal estimator f I = ΦθI which automatically selects
the best model so that

RI(θ, Φ) := inf
M

E‖Φθ − Φθ̂[M]‖2. (7.3)

We will refer to this as the ideal risk. Note that in the case where Φ is
the identity or, by extension, any orthonormal matrix, (7.3) is equal to∑

i min(θ2
i , σ

2), which is the risk of the ideal projection we encountered
earlier: compare (7.3). In the language of model selection, one would say
that we have an oracle which would select for us the best model to use, i.e.,
the best subset of explanatory variables.

Of course, if the ‘true model’ f = Φθ has coefficients θ which are very
sparse, then the ideal estimator would do very well. For example, since

RI(θ, Φ) ≤ E‖Φθ − Φθ̂[M∗]‖2,

where M∗ is the set of indices corresponding to the nonzero entries of θ,
M∗ := {i : θi 	= 0}, we have

RI(θ, Φ) ≤ σ2 |M∗|

(note that the estimator θ̂[M∗]) is unbiased). In comparison, if one uses the
MLE without model selection, the risk would be equal to n σ2 and hence
be much larger. The conclusion is that when there are only a few nonzero
parameters and we know which ones they are, we can achieve substantial
risk savings.

This extends to situations where most coefficients are nonzero but rela-
tively small, so that there is a small subset M∗ of cardinality much smaller
than n with small bias, for instance such that

inf
a∈V (M∗)

‖Φa − Φθ‖2 ≈ σ2 |M∗|.

Then the ideal risk is bounded by

inf
a∈V (M∗)

‖Φa − Φθ‖2 + σ2 |M∗| ≪ n σ2.

In other words, even though there are many parameters to estimate, we can,
in principle, ignore the bulk of these to achieve substantial risk savings.
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Finally, and just as before, the size of the ideal risk (7.3) quantifies the
precision of nonlinear approximation. We let fm be the best m-term ap-
proximation of f , i.e.,

‖f − fm‖2 = inf
a: #{i, ai 	=0}≤m

‖f − Φa‖2;

that is, it is that linear combination of at most m columns of Φ which comes
closest to the object f of interest. With this notation, one can rewrite the
ideal risk as

inf
m

‖f − fm‖2 + mσ2, (7.4)

which is exactly the same trade-off between the approximation error and
the number of terms in the partial expansion.

7.4. Oracles and ideal risk

We have seen that one can achieve the ideal risk (7.4) with the help of an
oracle and the real issue is how close one can get without. We follow Donoho
and Johnstone (1995) and introduce

K(Φ) = inf
θ̂

sup
θ∈Rp

E‖Φθ − Φθ̂‖2

σ2 + RI(θ, Φ)
.

A value of K(Φ) close to one would indicate that one could mimic an oracle,
while if K(Φ) were much greater than one, then one could not.

For orthonormal matrices Φ, we argued that K(Φ) obeys

K(Φ) ≈ 2 log n,

as shown by Donoho and Johnstone (1994a) and Foster and George (1994).
For general n× p matrices (p ≥ n), and not necessarily orthonormal, Foster
and George (1994) and Donoho and Johnstone (1995) show that K(Φ) obeys

K(Φ) = O(log p). (7.5)

We also refer to Barron and Cover (1991), Barron (1994), Birgé and Massart
(1997, 2001) and Baraud (2000) for similar results. Equation (7.5) is im-
portant because it asserts that it is possible to do nearly as well as someone
using an oracle.

Which estimators then mimic the oracle up to at most a logarithmic mul-
tiplicative factor? To answer this question, we take a complexity-penalized
fitting approach and consider an estimator θ̂ which minimizes the functional

‖y − Φa‖2 + λ2σ2 · ‖a‖ℓ0 , (7.6)

where we recall that ‖a‖ℓ0 = #{i : ai 	= 0}. In other words, our estimator θ̂
is the solution of the complexity-penalized residual sum of squares

min
M

‖y − Φθ̂[M]‖2 + λ2σ2 · |M|.
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Note that this a valid estimator since it can, at least in principle, be com-
puted from the data y. This is the ‘canonical selection procedure’, to quote
Foster and George (1994), and the estimator achieves the best trade-off be-
tween the goodness of fit and the complexity of the model. Popular selection
procedures such as AIC, Cp, BIC and RIC are all of this form, with differ-
ent values of the parameter: λ2 = 2 in AIC (Akaike 1974, Mallows 1973),
λ2 = log n in BIC (Schwarz 1978), and λ2 = 2 log p in RIC (Foster and
George 1994).

In an unpublished manuscript, Donoho and Johnstone (1995) proved that
the performance of this empirical model selection strategy obeys the oracle
inequality below. A sharper version of this inequality is published in the au-
thoritative reference on this subject, Birgé and Massart (2001, Theorem 2).

Theorem 7.1. (Donoho and Johnstone) Select λ2 = A·(1+
√

2 log p)2

where A > 8, and let θ be the solution to (7.6). Then

E‖Φθ − Φθ̂‖2 ≤ 6 (1 − 8/A)−1 · λ2 · (σ2 + RI(θ, Φ)). (7.7)

The oracle inequality (7.7) is valid for all n× p matrices Φ and all θ and,
therefore, empirical model selection comes within a log factor of ideal model
selection.

Proof. We follow Donoho and Johnstone (1995) and sketch a proof based
on complexity functionals. Without loss of generality, we may just assume
the noise level σ2 = 1 (the general follows by rescaling).

We introduce some notation and will call K(θ̃; y) the empirical complexity
functional

K(θ̃; y) = ‖Φθ̃ − y‖2 + λ2 ‖θ̃‖ℓ0 .

We make the following observations.

(1) Consider a vector θ0, which achieves the minimum noiseless complexity

θ0 = argminK(θ̃; Φθ).

Since θ̂ has minimum noisy complexity, θ̂ obeys

K(θ̂; y) ≤ K(θ0; y). (7.8)

(2) It follows from the decomposition y = Φθ + z that

K(θ̂; y) = ‖Φθ − Φθ̂‖2 + 2〈z, Φθ − Φθ̂〉 + ‖z‖2 + λ2 ‖θ̂‖ℓ0

= K(θ̂; Φθ) + 2〈z, Φθ − Φθ̂〉 + ‖z‖2.

(3) We may develop a similar expression for K(θ0; y), and plugging these
equalities on both sides of (7.8) gives

K(θ̂; Φθ) ≤ K(θ0; Φθ) + 2〈z, Φθ̂ − Φθ0〉. (7.9)
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Put K̂ = K(θ̂; Φθ) and K0 = K(θ0; Φθ) for convenience. We have

‖Φθ − Φθ̂‖2 ≤ K̂, (7.10)

and it will therefore suffice to develop a bound on the expected value of K̂.
Now check (7.9). If we could somehow argue that the term 2〈z, Φθ̂−Φθ0〉 is

small compared to K̂, e.g., at least a fraction of K̂, then we would be done.
This is precisely the strategy we will employ.

To achieve this goal, we let X(k) be the random variable defined by

X(k) = sup
θ1,θ2

{〈z, Φθ2 − Φθ1〉, ‖Φθj − Φθ‖2 ≤ k, λ2‖θj‖ℓ0 ≤ k}. (7.11)

The following lemma gives a bound on the size of X(k).

Lemma 7.2. Define kj = 2j (1−8/A)−1 max(K0, λ
2) for each j ≥ 0. Then

the event

Bj = {X(k) ≤ 4k/A} (7.12)

has probability at least 1 − 1/(2j)!.

Observe that on the event Bj , one cannot have k ≤ K0 + 2X(k), which
automatically implies that on this event

K̂ ≤ kj .

This property gives a bound on the expected value of K̂ since

EK̂ ≤ k0 P(K̂ ≤ k0) +
∑

j≥1

kj P(K̂ ≥ kj−1)

≤ k0 ·
(

1 +
∑

j≥1

2j
P(Bc

j−1)

)
.

It follows from P(Bc
j ) ≤ 1/(2j)! that

∑
j≥1 2j

P(Bc
j−1) ≤ 5 and, therefore,

EK̂ ≤ 6k0.

In conclusion,

EK̂ ≤ 6 (1 − 8/A)−1 max(λ2, K0),

which proves the claim since K0 is no greater than λ2 times the ideal risk.

We only briefly discuss Lemma 7.2. We consider k in the range [ℓλ2, (ℓ +
1)λ2) where ℓ is a fixed positive integer. Note that each feasible element
for the optimization problem is a linear combination of at most ℓ = ⌊k/λ2⌋
nonzero vectors, and therefore the difference θ2 − θ1 is a linear combination
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of at most 2ℓ distinct vectors from our dictionary; we let V be the linear
space of dimension at most 2ℓ spanned by those vectors and denote by PV

the orthogonal projection onto V . The Cauchy–Schwarz inequality gives

|〈z, Φθ2 − Φθ1〉| ≤ ‖PV z‖ · ‖Φθ2 − Φθ1‖ ≤ 2
√

k · ‖PV z‖,
since ‖Φθ2−Φθ1‖ ≤ 2

√
k by assumption. The term ‖PV z‖2 is a chi-squared⋆

random variable with 2ℓ degrees of freedom. The claim essentially follows
from large deviation bounds for such chi-squares. Because of space limita-
tions, we do not dwell on this issue.

7.5. Serious limitations

Theorem 7.1 is of theoretical importance but highly impractical. Solving
(7.6) is in general NP-hard (Natarajan 1995). To the best of our knowledge,
solving this problem essentially requires exhaustive searches over all subsets
of columns of Φ, a procedure which is clearly combinatorial in nature and
has exponential complexity since, for p of size about n, there are about 2p

such subsets. (We are of course aware that in the special case where Φ is
orthogonal, the solution is simply obtained by hard-thresholding the vector
ΦT y at the level

√
λσ: see Section 5.)

In other words, and quoting from Candès and Tao (2005a), ‘solving the
model selection problem might be possible only when p ranges in the few
dozens. This is especially problematic when one considers that we now live
in a data-driven era marked by ever larger datasets.’

In some sense, Theorem 7.1 is merely a theoretical gadget. However, it is
a very important one, since it shows what is achievable by a real estimator.
A crucial issue is whether there are computationally more efficient estima-
tors with similar properties. In Section 8, we will discuss a new breed of
complexity-penalized estimators with surprising properties.

7.6. An example: recovering edges from noisy data

Despite its computational infeasibility, Theorem 7.1 gives a precise state-
ment about the performance of a real estimator, and Donoho and Johnstone
(1995) give an example of how this might be used. We consider an image
model where one tries to recover the indicator function of a smooth set
(a shape, if you will)

f(x) = 1B(x), (7.13)

where we assume that the second derivative or the edge curvature ∂B is
bounded by some constant R, so that one can loosely express the class of
objects of interest by

F2(R) := {f = 1B : ‖∂B‖C2 ≤ R}.
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Such models, also known as boundary fragment models, have been studied
extensively by Korostelëv and Tsybakov (1993) and others. Note that this
class of images is neither convex nor orthosymmetric, and does not admit
an unconditional basis.

We will suppose that the observations come from the two-dimensional
model

Y (dx) = f(x) dx + εW (dx),

where W is a two-dimensional Wiener sheet. The problem is to recover the
edges of the unknown object from the noisy data and there are many known
results about this: see Korostelëv and Tsybakov (1993) and Donoho (1999)
and references therein.

It is well known that a good dictionary to represent elements in F2(R) is
the triangle dictionary

D = {1T : (x, y, z) ∈ [0, 1]6},
where T denotes the triangle T with vertices x, y, z. The dictionary D is not
countable and, in fact, we shall consider a finite version Dε of D where one
restricts the vertices to belong to a two-dimensional lattice with vertical and
horizontal spacing equal to ε2 so that the cardinality of Dε is polynomial
in ε.

It is not really difficult to show that, for objects f = 1B in the class of
interest, there is a superposition of triangles, i.e.,

fm =
m∑

i=1

1Ti
, 1Ti

∈ Dε,

whose approximation error obeys

‖f − fm‖2 ≤ C · m−2,

at least in the range where the approximation error dominates the quanti-
zation error, i.e., m−2 ≤ ε2. This merely follows from a first-order Taylor
approximation and we skip the details. Now it can be shown that there is
no dictionary with size growing at most polynomially in m that would yield
better rates of convergence: see Donoho (2001) and Candès and Donoho
(2000), for example.

The approximation error allows us to derive a bound on the ideal risk in
the triangle dictionary since

inf
m

(
‖f − fm‖2 + mǫ2

)
≤ inf

m

(
C · m−2 + ǫ2m

)
.

Optimizing over m gives that the ideal risk obeys

ideal risk ≤ C · ǫ4/3.

We can then invoke the oracle inequality (7.7), together with the fact that
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the size of the dictionary is polynomial in ε, to show that the performance
of empirical triangle selection obeys

E‖f̂ − f‖2 ≤ O(log 1/ε) · ε4/3. (7.14)

Now the risk of the empirical triangle selection is nearly optimal since
one can show – by embedding appropriate hypercubes – that any estimator
must obey

inf
f̂

sup
f∈F2(R)

E‖f − f̂‖2 ≥ c · ε4/3

and, therefore, (7.14) comes within a logarithmic factor of the minimax risk.
In addition, one could also get similar results for other degrees of smooth-

ness of the edge curve. For example, suppose that the boundary is Cs with
1 ≤ s ≤ 2. A function g is bounded in Cs with 1 ≤ s ≤ 2 if the first
derivative obeys

sup
t,t′

|g′(t) − g′(t′)|
|t − t′|s−1

< ∞.

(One can then define the modulus of smoothness as the supremum of this
ratio.) Then the risk of empirical triangle selection obeys

E‖f̂ − f‖2 ≤ O(log 1/ε) · ε2s/(s+1)

while the lower bound is at least of size c · ε2s/(s+1). (To deal with smoother
edges, one would need to employ dictionaries with higher-order polycurves.)

In conclusion, we have shown that statistical near-optimality and adap-
tivity can hold even though there are no unconditional bases.

8. The Dantzig selector

Model selection is an especially important topic in statistics in part because
of the very large number of users who are routinely fitting large linear models
or designing statistical experiments. Therefore, finding computationally
feasible strategies whose predictive risk comes close to that of the ideal
model selection would be likely to have a large impact. This section presents
some new ideas by Candès and Tao which show that this is in fact possible,
at least in some special settings.

This work is concerned with a more ambitious goal than that discussed
earlier. Indeed, they seek to estimate the parameter vector θ ∈ R

p from the
data

y = Φθ + z,

where Φ is an n × p matrix with p ≥ n, and z ∼ N(0, σ2 In). A typical
problem of this nature might be the reconstruction of an image θ ∈ R

p

with p pixels from undersampled and noisy data, e.g., from its noisy and
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incomplete Fourier coefficients – a problem that frequently arises in medical
imaging. Now, because p ≥ n, one might wonder how this is possible.
Indeed, suppose that we are in the noiseless case in which σ = 0; then,
to recover θ, one would need to solve a system of linear equations where

there are more unknowns than equations. Elementary linear algebra tells us
that this is problematic. But suppose now that θ is sparse or has entries
decaying like a power law, as explained in Section 6. Then this premise
radically changes the problem, making the search for solutions feasible.

8.1. The noiseless case

In fact, Candès and Tao (2005b) showed that in the noiseless case, one could
actually recover θ exactly by solving a linear program

(P1) min
θ̃∈Rp

‖θ̃‖ℓ1 subject to Φθ̃ = y, (8.1)

provided that the matrix Φ ∈ R
n×p obeys a so-called uniform uncertainty

principle (recall ‖θ̃‖ℓ1 :=
∑

i |θi|). That is, ℓ1-minimization finds without
error both the location and amplitudes – which we emphasize are a priori

completely unknown – of the nonzero components of the vector θ ∈ R
p.

In detail, Candès and Tao (2005b) show that exact reconstruction occurs
provided that sparse subsets of columns of the data matrix Φ are approxi-
mately orthonormal. For each M ⊂ {1, . . . , p}, we let Φ[M] be the n×|M|
submatrix obtained by extracting the columns of Φ corresponding to those
indices in M; then they define the number δS as the smallest quantity
obeying

(1 − δS) ‖c‖2 ≤ ‖Φ[M]c‖2 ≤ (1 + δS) ‖c‖2 (8.2)

for all subsets M with |M| ≤ S and coefficient sequences c. Small values of
δS indicate that every set of columns with cardinality less than S approx-
imately behaves like an orthonormal system. There is a related quantity
γS,S′ , which is the smallest quantity such that

|〈Φ[M]c, Φ[M′]c′〉| ≤ γS,S′ ‖c‖ ‖c′‖ (8.3)

holds for all disjoint sets M,M′ ⊆ {1, . . . , p} of cardinality less or equal to
S and S′, respectively. Small values of γ indicate that disjoint subsets of
covariates span nearly orthogonal subspaces.

Theorem 8.1. (Candès and Tao 2005b) Let S be the number of en-
tries of θ ∈ R

p that are nonzero, and suppose that δ2S + γS,2S < 1. Then
the solution θ⋆ to (8.1) is exact, i.e., θ⋆ = θ.

This theorem is remarkable since it says that one can solve underdeter-
mined systems of linear equations by linear programming. For instance,
together with Romberg (Candès and Tao 2004, Candès, Romberg and Tao
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2006), they show that one can recover exactly all kinds of sparse signals in
some fixed basis from undersampled Fourier data or other types of incom-
plete measurements, a phenomenon now known as compressive sampling

and with far-reaching implications. But what is more surprising is that
compressive sampling extends to noisy data.

8.2. Ideal model selection

To get a sense of what might be possible, let us consider as before the least
squares estimate

θ̂[M] = argmina∈V (M)‖y − Φa‖2.

Since θ̂[M] vanishes outside M, we have that

E‖θ − θ̂[M]‖2 = ‖Pθ − P θ̂[M]‖2 +
∑

i/∈M

|θi|2,

where P is the projection on the coordinate subset M. We then write

Pθ − P θ̂[M] = H (g + z),

where H = (Φ[M]T Φ[M])−1Φ[M]T and g = Φθ − ΦPθ. It follows that

E‖Pθ − P θ̂[M]‖2 = ‖Hg‖2 + σ2Tr((Φ[M]T Φ[M])−1).

However, since all the eigenvalues of Φ[M]T Φ[M] belong to the interval
[1 − δ|M|, 1 + δ|M|], we have

E‖Pθ − P θ̂[M]‖2 ≥ 1

1 + δ|M|
· |M| · σ2.

For each set M with |M| ≤ S and δS < 1, we have

E‖θ − θ̂[M]‖2 ≥
∑

i∈Mc

θ2
i +

1

2
|M| · σ2.

If we then define the ideal estimator θI as

θI = argminM E‖θ − θ̂[M]‖2,

we have shown that the ideal mean-squared error is bounded below by

E‖θ − θI‖2 ≥ 1

2
min
M

‖θ − θ̂[M]‖2 + |M| · σ2

=
1

2

∑

i

min(θ2
i , σ

2).

We feel that we do not need to make further comment on the right-hand
side! What we would like to know is whether there is a computationally
efficient estimator which can mimic the ideal risk.
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8.3. The noisy case

Assume for simplicity that the columns of Φ are normalized (there are vari-
ations to handle the general case). Then the Dantzig selector estimates θ
by solving the convex program

(DS) min
θ̃∈Rp

‖θ̃‖ℓ1 subject to sup
1≤i≤p

|(ΦT r)i| ≤ λ · σ (8.4)

for some λ > 0, and where r is the vector of residuals

r = y − Φθ̃. (8.5)

The solution to this optimization problem is the minimum ℓ1 vector which
is consistent with the observations. The constraints impose that the resid-
ual vector is within the noise level and does not correlate too well with the
columns of Φ. We would like to mention that there exist related, yet dif-
ferent proposals in the literature, and most notably the lasso introduced by
Tibshirani (1996).

The program (DS) is convex and can be recast as a linear program (LP)

min
∑

i

ui (8.6)

subject to

−u ≤ θ̃ ≤ u − λσ 1 ≤ ΦT (y − Φθ̃) ≤ λσ 1,

where the optimization variables are u, θ̃ ∈ Rp, and 1 is a p-dimensional
vector of ones. This is nice because linear programming is a very mature
field with stable and efficient solvers. As a matter of fact, the paper by
Candès and Tao (2005a) reports on experiments where p is in the hundreds
of thousands.

The Dantzig selector is not only computationally tractable, it is also ac-
curate.

Theorem 8.2. (Candès and Tao 2005a) Set λ := (1+ t−1)
√

2 log p in
(8.4) and suppose that θ has S nonzero terms with δ2S +γS,2S < 1−t. Then

E‖θ̂ − θ‖2 ≤ O(log p) ·
(

σ2 +
∑

i

min(θ2
i , σ

2)

)
. (8.7)

The slogan is thus that linear programming can mimic the oracle. It is
worth mentioning that the oracle inequality (8.7) is not exactly the state-
ment contained in Candès and Tao (2005a) where it is only shown that

‖θ̂ − θ‖2 is bounded by the right-hand side of (8.7) with very large prob-
ability. A minor modification of their argument, however, gives the bound
on the MSE.
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The assumptions are here more restrictive than in Theorem 7.1, but this
is to be expected since we are looking at a more difficult problem, namely,
estimating θ rather than Φθ. For example suppose that δ2S = 0, which may
indicate that there is a matrix Φ[M1 ∪ M2] with 2S columns (|M1| = S,
|M2| = S), which is rank-deficient. If this is the case, there is a pair of
vectors θ1 ∈ V (M1), θ2 ∈ V (M2) with the property

Φ(θ2 − θ1) = 0, ⇔ Φθ2 = Φθ1.

This is why we need δ2S < 1. For, otherwise, the model may not be identi-
fiable since both θ1 and θ2 have at most S nonzero entries. The condition
δ2S + γS,2S < 1 (or less than 1− t) is only slightly stronger than the identi-
fiability condition.

There are other versions of Theorem 8.2 which only require θ to be sparse
in the sense that many of its entries are small but not necessarily zero, e.g.,
θ may belong to a weak-ℓp ball for some p > 0: see Candès and Tao (2005a)
for details. In addition, the Dantzig selector is a kind of soft-thresholding
estimator and therefore has the tendency to underestimate the true value
of θ. The aforementioned reference details simple versions which correct for
the bias and have better practical performance.

8.4. Comparison with the combinatorial search

For sufficiently sparse vectors the near-orthogonality property (8.2) of the
matrix Φ shows that

‖Φ(θ − θ̂)‖ ≍ ‖θ − θ̂‖

where ≍ means that the ratio is bounded above and below. Thus, one can
recast (8.7) as

E‖Φθ − Φθ̂‖2 ≤ O(log p) · (σ2 + RI(θ, Φ)). (8.8)

Like the ‘combinatorial search estimator’ (7.6), the Dantzig selector comes
within a logarithmic factor of the ideal risk (7.3).

The catch, however, is that although the hypotheses of Theorem 8.2 are
in some sense necessary to estimate θ accurately, they are probably too
restrictive when one is ‘only’ interested in estimating Φθ. For instance,
Theorem 7.7 does not assume anything about the matrix Φ and about the
sparsity of the true vector θ ∈ R

p. It is likely that the Dantzig selector
would also obey (8.8) under more general conditions. As a matter of fact,
we regard as extremely significant the problem of deciding whether or not
there is – under mild conditions – a computationally tractable estimator
mimicking the oracle.
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9. Frames and libraries

Getting back to the familiar framework of thresholding, it is important to
realize that thresholding can be successful even outside the specific case
where one is given a single orthobasis. In this section we discuss two cases
in which thresholding is highly effective even though there is no (single)
orthobasis.

9.1. Tight frames

In harmonic analysis, it is generally much easier to construct a tight frame
than an orthobasis. In R

n, a tight frame is a collection of vectors (ϕi) with
the property

‖f‖2 =
∑

i

|〈f, ϕi〉|2. (9.1)

If we arrange the vectors ϕi as the columns of a matrix Φ, then this property
may be expressed as

‖ΦT f‖2 = ‖f‖2,

which says that ΦT is an isometry. The isometry property provides a simple
reconstruction formula from the frame coefficients (〈f, ϕi〉) since ΦΦT = In,
or equivalently

f =
∑

i

〈f, ϕi〉ϕi. (9.2)

The only difference between (9.1)–(9.2) and an orthobasis is that the ele-
ments ϕi may not be linearly independent. In particular, we may have more
elements than the dimension of the space. In general, a tight frame is a col-
lection of vectors taken from a Hilbert space obeying (9.1). For example,
we have tight frames in L2(R), L2(R

2), and so on, where the inner product
is of course the usual inner product over square integrable functions.

The exact orthogonality between elements is what can make the con-
struction of orthobases extremely challenging. In contrast, one has more
flexibility in constructing tight frames and this is why this is easier. For in-
stance, while tight Gabor frames exist, Balian and Low have shown that it is
impossible to find an orthonormal equivalent with nice time-frequency local-
ization properties (there are orthobases of local cosines but this is somewhat
different): see Mallat (1999). Also, Candès and Donoho (2004) have con-
structed nice tight frames of curvelets and it is not known whether one can
construct an orthonormal equivalent with nice time-frequency localization
properties.

Suppose that we observe y ∼ N(f, σ2 In); then we can define the empirical
frame coefficients ỹ = ΦT y which obey the Gaussian model

ỹi = θi + z̃i, (9.3)
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where z̃ is a Gaussian process with zero mean and covariance matrix

Cov(z̃i, z̃j) = σ2〈ϕi, ϕj〉.
In particular, the variance of z̃i obeys Var(zi) = σ2‖ϕi‖2 which we denote
by σ2

i . The situation is analogous in the continuous white-noise model
where the empirical coefficients are defined by ỹi =

∫
ϕi(t)Y (dt) giving an

infinite-dimensional version of the sequence model (9.3) (the covariance is
ε2〈ϕi, ϕj〉). Also note that, since ‖ϕi‖ ≤ 1, we have σi ≤ σ and

∑

i

σ2
i = E‖z̃‖2 = E‖ΦT z‖2 = E‖z‖2 = nσ2.

One can of course apply individual thresholding in a tight frame. Suppose
we are in the sampled model with n observations. We have seen in Section 5
that the risk of a thresholding rule, with threshold

√
2 log n · σi, obeys

E‖θi − θ̂i‖2 ≤ (2 log n + 1) · (σ2
i /n + min(θ2

i , σ
2
i ))

and therefore

E‖θ − θ̂‖2 ≤ (2 log n + 1) ·
(

σ2 +
∑

i

min(θ2
i , σ

2
i )

)
.

Returning to the original domain gives an estimator f̂ =
∑

i θ̂iϕi obeying

E‖f − f̂‖2 = E‖Φθ − Φθ̂‖2 ≤ E‖θ − θ̂‖2,

where we have used the fact that, for any vector h, ‖Φh‖ ≤ h. It then
follows that the performance of the shrinkage estimator is bounded by

E‖f − f̂‖2 ≤ (2 log n + 1) ·
(

σ2 +
∑

i

min(θ2
i , σ

2
i )

)
. (9.4)

The message is of course that, if the frame coefficient sequence is sparse,
then this strategy is highly effective.

We emphasized the ‘frame coefficient sequence’ for a reason. There are
many ways to expand a signal or a vector in a frame, and depending upon
the frame, the frame decomposition may be dense while there may exist
other very sparse decompositions. We give an example. Suppose that the
frame is composed of two orthobases Φ = [Φ1, Φ2]/

√
2 where each Φj is an

n×n orthonormal matrix. To make things concrete, suppose Φ is the time-
frequency dictionary where Φ1 is the identity matrix and Φ2 is the unitary
discrete Fourier matrix. Now consider a signal f made out of one spike

f = (µ, 0, . . . , 0),

where µ is some large amplitude. Then f is a multiple of a single column
of Φ and the ideal risk (Section 7) is simply equal to σ2. Now, for each
i, |ΦT

2 f |i = µ/
√

n and, if the amplitude of the spike is large enough, then
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all the Fourier coefficients will exceed the noise level. Applying the thresh-
olding estimator and using the proxy (5.7), we would not expect anything
substantially better than

2 log n + 1

2
· (n + 1) · σ2

2
,

which is horrible since there is only one parameter to estimate!

9.2. The curvelet shrinkage

Candès and Donoho recently introduced tight frames of curvelets to over-
come inherent limitations of traditional multiscale representations such as
wavelets (Candès and Donoho 2000, Candès and Guo 2002, Candès and
Donoho 2004). Conceptually, the curvelet transform is a multiscale pyra-
mid with many directions and positions at each length scale, and needle-
shaped elements at fine scales. This pyramid is nonstandard, however, as
curvelets have useful geometric features that set them apart from wavelets
and the like. For instance, curvelets obey a parabolic scaling relation which
says that at scale 2−j , each element has an envelope which is aligned along a
‘ridge’ of length 2−j/2 and width 2−j . It is beyond the scope of this paper to
discuss this new construction and we refer to Candès and Donoho (2004) for
mathematical details and to Candès, Demanet, Donoho and Ying (2005) for
the description of fast and accurate digital curvelet transform algorithms.

Curvelets are interesting because they efficiently address very important
problems where wavelet ideas are far from ideal. Of interest here is that
curvelets provide optimally sparse representations of objects which display
curve-punctuated smoothness – smoothness except for discontinuity along a
general curve with bounded curvature. Such representations are nearly as
sparse as if the object were not singular and turn out to be far more sparse
than the wavelet decomposition of the object.

Quantitatively speaking, let (θi) denote the curvelet coefficient sequence
of a C2 function with piecewise C2 singularities (edges). Then Candès and
Donoho (2004) showed that the nth largest entry |θ|(n) in the sequence obeys

|θ|(n) ≤ C · n−3/2(log n)3/2, for all n > 0. (9.5)

This decay is optimal: among all possible representations of objects with
singularities, this is essentially the sparsest one. That is, there is no basis,
tight frame, frames and so on in which the coefficients of a function f with
piecewise C2 edges would have a faster decay.

Of course, the enhanced sparsity shows that one can recover such objects
from noisy data by simple curvelet shrinkage and obtain an MSE order
of magnitude better than that achieved by more traditional methods, e.g.,
wavelet shrinkage. Omitting details having to do with the definition of
the thresholding zone (Candès and Donoho 2002), one can then plug the
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estimate (9.5) into the oracle inequality and obtain that the risk obeys

E‖f − f̂‖2 ≤ O(log2 ε−1) · ε4/3.

(Recall that the minimax lower bound exceeds c · ε4/3.) It goes without
saying that we do not need to solve an intractable problem (like empirical
triangle selection) to recover a smooth image with edges from noisy data in
an optimal fashion. Instead, one can just go into the curvelet domain (by
means of the fast digital curvelet transform), throw out the small coefficients
and invert the transform.

9.3. Statistical estimation in a library of bases

Suppose now that we are given a library L of orthonormal bases

L = {B1, . . . ,BL},
where the Bis are L distinct orthonormal bases. For example, the library L
might be a concatenation of several orthonormal bases, e.g., the canonical
basis (or the spike basis, as it is called in signal processing), the Fourier basis,
a wavelet basis, a spline basis, a ridgelet basis (Candès and Donoho 1999)
and so on. Or the library L might be the cosine, the wavelet (Coifman
and Meyer 1991) or the ridgelet packet library (Flesia, Hel-Or, Averbuch,
Candès, Coifman and Donoho 2003). We would like to emphasize that we
consider libraries of orthonormal bases for simplicity but the results extend
to libraries of tight frames (see Candès (2002)), so that it is possible to
include the aforementioned curvelets, contourlets, and many other recent
interesting constructions in computational harmonic analysis.

We wish to explore the possibility of adaptive basis estimation. Suppose
that we observe a signal in white noise. Adaptive basis estimation means
that we would like to select, based on the data, the best basis in which to
estimate the signal; that is, the basis in which the true unknown signal is
in some sense the sparsest possible.

We let yi[B] be the coordinates of the observations in the basis B and,
likewise, we let θi[B] and zi[B] be the coordinates of the signal f and of the
error vector in B. In the basis B, our statistical model is of the form

yi[B] = θi[B] + zi[B],

and the ideal risk in that basis B is

RI(θ,B) =
∑

i

min(|θi[B]|2, σ2).

We now introduce the ideal risk in the library as the minimum over all bases
in the library

RI(θ,L) = min
B∈L

RI(θ,B). (9.6)
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This ideal risk is achievable with the aid of (1) a basis oracle which selects
the best basis and (2) a coordinate oracle which tells us which coordinates
in that basis are worth estimating.

The issue is then whether one can select a basis in a near-ideal fashion
from the data alone. In order to do this, Donoho and Johnstone (1994b)
introduce the entropy functional

Eλ(y,B) :=
∑

i

min(|yi[B]|2, λ2 σ2),

where λ is a parameter. This quantity is not surprising since this is none
other than the empirical complexity functional (7.6) in the basis B

Eλ(y,B) := min
a

‖y[B] − a‖2 + λ2 σ2‖a‖ℓ0 .

It then seems sensible to choose the basis for estimation in which Eλ(y,B)
is smallest. The estimation strategy consists of two simple stages.

(1) We select B̂ as the best orthobasis B̂ according to the entropy

B̂ := argminEλ(y,B).

(2) We then apply hard-thresholding (with level λσ) in that basis so that

θ̂i[B̂] =

{
yi[B̂], |yi| > λ σ,

0, otherwise.

The result is that if λ is correctly tuned, empirical basis selection nearly
achieves the performance of the ideal estimator.

Theorem 9.1. (Donoho and Johnstone 1994b) Let Mn be the num-
ber of distinct vectors in the library and set λ2 = A(1 +

√
2 log Mn)2 for

some A > 8. Then

E‖θ̂[B̂] − θ[B]‖2 ≤ 6(1 − 8/A)−1 · λ2 · (σ2 + RI(θ,L)). (9.7)

If there is an efficient basis for estimation, then empirical basis selection
will find it and the error of estimation will be small.

The reader is right to suspect that the proof of Theorem 9.1 is based on
minimum complexity functionals and is nearly identical to that of Theo-
rem 7.1 and we will, therefore, not reproduce it.

An interesting example concerns denoising in a packet library such as
cosine or wavelet packets. In a cosine packet library, for instance, there are
about n log2 n distinct elements where n is the number of samples, while
the number of orthobases is equal to the number of dyadic trees of depth
about log2 n, which is exponential in n. This looks daunting as one would
naively think that one would need to evaluate exponentially many entropy
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functionals in order to find the best basis. Fortunately, because of the
additivity property of the entropy functional and of the tree structure of
the library of bases, there is a way to invoke dynamic programming to
select the best basis. In particular, Coifman and Wickerhauser (1992) show

that one can compute B̂ in O(n). Since all the noisy coefficients in the
library (there are about n log2 n of them) can be computed in O(n log2 n),
the empirical best basis estimator can be rapidly computed.

10. Further topics

In this last section, we discuss a selection of other important problems and
topics which we hope will give an idea of how broad the field really is.

10.1. From theory to practice

We have not talked much about the practical performance of shrinkage
ideas in signal and image processing. Wavelet shrinkage ideas have indeed
been deployed with great success in many applications, and are nowadays
routinely used by researchers and engineers. We mention here a few topics
which enhance the estimation.

Thresholding rules in a wavelet basis are known to produce some arti-
facts, some of which may be removed by applying a translation-invariant
type of shrinkage. For example, a frequently discussed approach consists of
applying cycle spinning. Cycle spinning is a kind of translation-invariant
thresholding rule: this technique computes several individual reconstruc-
tions by applying shifts to the noisy data and averages them out, after
applying the reverse shifts, of course. Another popular approach consists in
applying thresholding in a redundant wavelet representation, such as the un-
decimated wavelet transform; see the ‘à trous’ algorithm in Starck, Murtagh
and Bijaoui (1998). The basic idea underlying these methods is that an av-
erage of similar-looking estimators produces visually more pleasing results
than any of the individual estimators taken individually.

Researchers have also developed the idea of ‘block thresholding’, which
originates in Efrŏımovich (1985). Instead of treating each coefficient indi-
vidually, the idea is that the statistical properties of images may be used
to group coefficients together to better inform the decision. For example, if
a wavelet coefficient is large, it may indicate the presence of an edge and,
therefore, some of the neighbouring coefficients are likely to be large as well.
There are many variations on this theme and we will not attempt to define
these strategies. We shall instead simply mention that block thresholding
works well empirically and is also amenable to rigorous analysis. We refer
the reader to Cai (1999) and Hall, Kerkyacharian and Picard (1999) for
experimental and theoretical results in this direction.
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In a different direction, several authors (Candès and Guo 2002, Mal-
gouyres 2002, Durand and Froment 2003) have independently proposed an
attractive alternative to single basis thresholding. The idea here is to com-
bine basis function expansions with variational principles for the reconstruc-
tion of an image/signal whose coefficients (in some basis) are known only
approximately: they might be noisy, quantized, and so on. In the denoising
problem where one wishes to recover an object f from y = f + z, one could
imagine solving the following problem:

min ‖g‖TV subject to |ΦT (g − y)|i ≤ λσ for all i, (10.1)

where ΦT is the transform of interest (e.g., the wavelet transform), (ΦT f)i =
〈f, ϕi〉. Here, the total variation norm ‖g‖BV measures the complexity of
the fit and is roughly equal to the integral of the Euclidean norm of the
gradient. The aforementioned references demonstrate that this procedure
works extremely well. Thresholding rules tend to produce artificial oscil-
lations near discontinuities even though the original signal/image may be
flat on both sides of the discontinuity, a ‘pseudo-Gibbs phenomenon’. Ideas
like (10.1) are very effective at removing such artifacts while retaining other
nice properties of shrinkage methods.

In closing, shrinkage methods have inspired a lot of activity and new
methods have been tuned to achieve the best practical performance.

10.2. Inverse problems

Another interesting problem occurs when one cannot measure the object
f(t) directly, but can only make linearly distorted measurements. That
is, we are only able to observe data about g(u) = Kf(u), where K is a
linear transform. Such problems arise in multiple scientific settings ranging
from medical imaging to physical chemistry to extragalactic astronomy. For
example, in the case where K is a convolution transform, the signal is
blurred as one measures

g(t) = (k ∗ f)(t),

where k is a convolution kernel. Recovering blurred images from noisy data
is ubiquitous in science and engineering: see Bertero and Boccacci (1998)
for a nice survey. Another problem which has received a lot of attention
concerns the case where K is the Radon transform

g(t, θ) =

∫

Lt,θ

f(x1, x2) dx1 dx2,

where for θ ∈ [0, 2π) and t ∈ R, Lt,θ is the line

{x1 cos θ + x2 sin θ = t}.
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Recovering an image from its two-dimensional noisy projections (line inte-
grals) is the subject of computed tomography, which has been and still is
the focus of intense research. Most interesting problems are ill-posed in the
sense that the singular values of K tend to zero (think about a deconvo-
lution problem where the convolution kernel k ‘blocks’ the high-frequency
content of the signal).

Suppose then that we observe y of the form

y = Kf + z, (10.2)

where z is white noise and f is the object we wish to recover. Suppose
we are given an orthobasis or a tight frame (ϕi) for functions ‘living’ in
the object space. Then, under certain conditions, one can define dual basis
elements (ψi), which ‘live’ in the data space and obey the relation

[Kf, ψi] = δi 〈f, ϕi〉, (10.3)

where, in the above display, we have used the notation [·, ·] to distinguish
between the data and the object spaces. Here the δis are defined by prop-
erties of K and called quasi-singular values; if ϕi is an orthobasis, they are
set in such way that ‖ψi‖ = 1 (if (ϕi) is a tight frame, we could impose
‖ϕi‖ = ‖ψi‖). The quasi-singular value relation (10.3) expresses the idea
that one can measure the coefficients of f from Kf . Suppose that the δis
do not vanish, then a consequence of the identity f =

∑〈f, ϕi〉ϕi and (10.3)
is the reconstruction formula

f =
∑

i

δ−1
i [Kf, ψi]ϕi. (10.4)

This formula is what Donoho calls a biorthogonal decomposition of K; see
Donoho (1995) or the wavelet–vaguelette decomposition (WVD) in the case
when (φi) is a wavelet basis. It is an extension of the SVD decomposition
which reads

f =
∑

d−1
i [Kf, hi]ei, (10.5)

where (d2
i ) and (ei) are the eigenvalues and eigenfunctions of K∗K, K∗Kei =

d2
i ei, and where hi is the image of ei under K, Kei = dihi. (The ill-posedness

means that di → 0.)
The point is that many of the tools and ideas we have seen before apply.

To make this connection, consider the sequence space version of (10.2),
namely,

[y, ψi] = [Kf, ψi] + [z, ψi],

which one can write as

yi = δiθi + [z, ψi]

(recall that θi = 〈f, ϕi〉 are the coordinates of f we wish to estimate).
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Dividing the above display by δi shows that we wish to recover the mean of
a Gaussian vector

ỹi = θi + σizi, (10.6)

where σi = σ‖ψi‖ and the zis are N(0, 1) (the covariance matrix is given
by Cov(zi, zj) = [ψi, ψj ]/(‖ψi‖ ‖ψj‖)). The only real difference is that the
noise is now heteroscedastic⋆ with σi increasing as the quasi-singular values
are decreasing.

One can thus see that everything should generalize nicely. In particular,
if we apply thresholding, the proxy for the mean-squared error will be

∑

i

min(θ2
i , σ

2
i ), (10.7)

and this approach will be very effective if the following two conditions hold:
(1) the signal is sparse in the basis (ϕi) and (2) the zis in (10.6) are not too
correlated, so that treating each coefficient individually still makes sense.
We note that the latter condition is equivalent to saying that the system
(ϕi) nearly diagonalizes the Gram matrix K∗K; by near-diagonalization,
we mean that the representation of K∗K in the system (ϕi) is sparse.

The challenge for applied harmonic analysts is then to construct repre-
sentations which sparsely represent objects of scientific interest and, at the

same time, sparsely represent the operators under study. This is precisely
what multiscale systems such as wavelets and curvelets achieve. On the one
hand, they provide sparse representations of convolutions, Radon trans-
forms, and many other types of common operators, and on the other, they
simultaneously provide sparse representations of objects allowing for point-
like singularities (wavelets) and curve-like singularities (curvelets). This is
the reason why they have proved to be useful for solving inverse problems
(Donoho 1995, Candès and Donoho 2002). In two dimensions, for instance,
there is a quantitative theory showing that, for certain kind of interest-
ing models of images, simple algorithms based on the shrinkage of curvelet
biorthogonal decompositions achieve near-optimal statistical rates of con-
vergence (Candès and Donoho 2002).

On the other hand – and this is very important – if one employs instead
the singular system (ei) for estimation, as is common, then the MSE may
be very large. The proxy (10.7) lets us understand why this is the case. For
the MSE to be small, the signal must be concentrated in the coordinates
where the eigenvalues are large. But this is not usually the case, and the
MSE is large. For example, in deconvolution problems, tomography prob-
lems and many others, the eigenvectors ei are sinusoids, at least roughly
speaking. The problem is that sinusoids provide very poor partial recon-
structions of the kinds of signals and images in which one is typically inter-
ested: e.g., images of the brain or the interior of the earth all have edges and
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perhaps other types of singularities. As a consequence, SVD-based methods
tend to underperform when the object we wish to image is not smooth.

10.3. FDR thresholding rules

The ‘universal’ threshold of
√

2 log n is often criticized because it is very
conservative; it potentially sets to zero many coordinates where the signal
is larger than the noise level. We close this paper by discussing innova-
tive adaptive choices of thresholds which have their origin in the field of
hypotheses testing – in multiple comparisons, to be more exact.

Consider the simpler problem of deciding, for each i = 1, . . . , n, whether
or not θi = 0, given the data

yi = θi + zi, zi i.i.d. N(0, σ2).

Formally, we wish to simultaneously test n hypotheses

H0,i : θi = 0,

H1,i : θi 	= 0.

Then one could accept the ith null hypothesis if |yi| ≤ σ
√

2 log n and reject
it otherwise. This would essentially correspond to the Bonferroni procedure
which controls the so-called familywise error rate, defined as the probability
of rejecting at least one hypothesis Hi,0 which is true. If we want a family-
wise error rate below α, the Bonferroni method would ask us to reject Hi,0

if and only if

|yi| > σ z(α/2n),

where z(α) is the upper quantile of the Gaussian distribution (z(α) is defined
by P(N(0, 1) > z(α)) = α). For nearly all reasonable levels α and n large,
z(α/2n) is nearly equal to

√
2 log n.

In the problem of multiple comparisons, control of the familywise er-
ror rate yields very conservative decisions. Ten years ago, Benjamini and
Hochberg (1995) introduced an alternative, and instead proposed to con-
trol the false discovery rate (FDR). The FDR is the expected ratio between
the number of incorrectly rejected null hypotheses and the total number of
rejections. The advantage is that FDR controlling procedures have greater
power to detect alternatives. In our problem, we order the values by de-
creasing order of magnitude |y|(1) ≥ |y|(2) ≥ · · · ≥ |y|(n), and define iFDR to
be the largest index for which

|y|(i) ≥ σ z(q i/2n).

Then the procedure which rejects all the hypotheses corresponding to the
iFDR largest values of |yi| controls the FDR at level q (meaning that the
expected proportion of false rejections is less than q).
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A little later, Abramovich and Benjamini (1996) proposed applying FDR
for estimation and introduced a new thresholding rule. The idea is simply to
estimate the parameters corresponding to the rejected hypotheses (these are
judged estimable) and set the others to zero. With λFDR = z(q iFDR/2n),
the FDR thresholding rule is thus defined by

θ̂i =

{
yi, |yi| > λFDR σ,

0, else.
(10.8)

This is interesting because (10.8) is a data-driven thresholding rule which
adapts to the sparsity of the signal. The threshold is larger for sparser
signals and smaller for denser ones.

To understand why FDR thresholding rules are a good thing, suppose
that by looking at y we learn that many of the coordinates θi are nonzero.
Then the FDR threshold will be lower than the universal threshold and
the estimator will have a smaller bias. Of course, we will also occasionally
estimate some θis which are close to zero, hence increasing the variance a
little. But the proportion of ‘erroneous’ estimations is controlled, and in
the bias + variance trade-off we will typically draw significantly ahead of
universal thresholding rules. There are numerical experiments showing that
FDR thresholding rules perform very well: see Abramovich and Benjamini
(1996) and Abramovich, Benjamini, Donoho and Johnstone (2000). There is
also a beautiful theory showing that, in some special set-ups where θ belongs
to a weak-ℓp ball, for example, the estimator achieves adaptive asymptotic
minimaxity (Abramovich et al. 2000).

FDR thresholding rules are a nice new chapter in the history of thresh-
olding and we suspect that they will generate a lot of interest in the near
future. There are also challenging questions that do not have satisfactory
answers at the moment. For example, how would FDR thresholding rules
adapt when the observations are correlated and how would one use them in
more sophisticated estimation problems?

10.4. Last words

Near the beginning of this article, we emphasized that we would focus on
a couple of key ideas that have had a very significant impact on my pro-
fessional development and on the field in general. A large fraction of this
paper is a write-up of a series of lectures I delivered in 2004, and the whole
manuscript was conceived with the goal of teaching this material to nonspe-
cialists. It is not an exhaustive survey of all the research that occurred in
the field, and I hope that this personal selection of topics will not be found
offensive.

Last but not least, I would like to thank Carl for encouraging me to write
this article.



Modern statistical estimation via oracle inequalities 321

REFERENCES

F. Abramovich and Y. Benjamini (1996), ‘Adaptive thresholding of wavelet coeffi-
cients’, Comput. Statist. Data Anal. 22, 351–361.

F. Abramovich, Y. Benjamini, D. L. Donoho and I. M. Johnstone (2000), Adapting
to unknown sparsity by controlling the false discovery rate. Technical Report
2000-19, Department of Statistics, Stanford University. To appear in Ann.

Statist.
H. Akaike (1974), ‘A new look at the statistical model identification’, IEEE Trans.

Automatic Control AC-19, 716–723.
Y. Baraud (2000), Model selection for regression on a fixed design, Probab. Theory

Rel. Fields 117, 467–493.
A. R. Barron (1994), ‘Approximation and estimation bounds for artificial neural

networks’, Machine Learning 14, 113–143.
A. R. Barron and T. M. Cover (1991), ‘Minimum complexity density estimation’,

IEEE Trans. Inform. Theory 37, 1034–1054.
Y. Benjamini and Y. Hochberg (1995), ‘Controlling the false discovery rate: A prac-

tical and powerful approach to multiple testing’, J. Roy. Statist. Soc. Ser. B

57, 289–300.
M. Bertero and P. Boccacci (1998), Introduction to Inverse Problems in Imaging,

Institute of Physics Publishing, Bristol.
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Glossary

Bayesian estimation. In this paper, we often use the terms ‘Bayesian
estimator’ or ‘Bayes’ rule’ to denote any estimator which minimizes the
so-called Bayes risk defined by

B(π) = EπR(θ, θ̂) =

∫
R(θ, θ̂)π(dθ),

where π is the prior distribution on the parameter θ and R(θ, θ̂) is the risk

of θ̂; see below for a definition of the risk.

Bias. The bias of an estimator is defined as the difference between the
true value of the parameter vector and the expected value of the estimator
under the true distribution. Suppose Y is a vector with joint distribution
fθ, where θ ∈ Θ is a parameter of interest, and let θ̂ be a function of Y used
to estimate θ. Then the bias of θ̂ is given by

bias(θ̂) = θ − Efθ
θ̂,

where Efθ
is the expectation of θ̂ under the true distribution fθ, Efθ

θ̂ =∫
θ̂(y) fθ(dy). We say that an estimator is unbiased if bias(θ̂) = 0. For

example, if Y1, Y2, . . . , Yn are i.i.d. N(θ, 1), then θ̂ = (Y1 + · · · + Yn)/n is
unbiased for θ.
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Chi-square distribution. The chi-square distribution is that of the sum
of squares of independent standard normal random variables; if we let
Z1, Z2, . . . , Zd be i.i.d. N(0, 1), the random variable Y := Z2

1 + · · · + Z2
d

follows the (central) chi-square distribution with d degrees of freedom.

Gaussian signal. A Gaussian signal is simply a Gaussian process. A Gaus-
sian process X = (X1, X2, . . . , Xn) is a family of random variables whose
joint distribution is multivariate normal. A random vector is said to be
multivariate normal if every linear combination a1X1 + · · ·+ anXn (the ais
are nonrandom) is normally distributed. In the case where the covariance
matrix is nonsingular, this is equivalent to saying that the joint density of
the random vector is given by

f(x) =
1

(2π)n/2 (detΣ)1/2
e−(x−µ)T Σ−1(x−µ)/2,

where µ ∈ R
n is the mean vector and Σ ∈ R

n×n the covariance matrix.

i.i.d. ‘i.i.d.’ stands for independently and identically distributed. We say
that the random variables X1, . . . , Xn are i.i.d. when they are all indepen-
dent and follow the same distribution.

Heteroscedasticity. A sequence or a vector of random variables is hetero-
scedastic when the variances of the random variables in the sequence are
not all the same. The complement is homoscedasticity.

Minimax estimation. A minimax estimator is any estimator whose worst-
case risk is minimal. In other words, a minimax estimator is the solution to

inf
θ̂

sup
θ∈Θ

R(θ, θ̂),

where Θ is the parameter space and the infimum is taken over all measurable
functions of the data.

Risk of an estimator. In decision theory, we measure the quality of
an estimator by the nonnegative loss function ℓ(θ, θ̂). For example, the

quadratic loss is given by (θ − θ̂)2 for scalar-valued parameters or ‖θ − θ̂‖2
ℓ2

for vector-valued parameters. The idea is that the loss is small when θ and θ̂
are close, and increases as they get far apart. The loss is a random variable
since θ̂ is random, and the risk R(θ, θ̂) is the expected value of the loss

R(θ, θ̂) := Efθ
ℓ(θ, θ̂).

Again, Efθ
is the expectation under the distribution fθ (see the entry for

‘bias’).


